周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

展开的链接列表是链接列表的变体,它在每个节点中存储多个元素。它可以显著提高缓存性能,同时减少与存储列表元数据(如引用)相关的内存开销。它与B树有关。

record node {
    node next       // reference to next node in list
    int numElements // number of elements in this node, up to maxElements
    array elements  // an array of numElements elements, with space allocated for maxElements elements
}

其他回答

它非常特定于领域,但半边缘数据结构非常整洁。它提供了一种在多边形网格(面和边)上迭代的方法,这在计算机图形和计算几何中非常有用。

二进制决策图(我最喜欢的数据结构,擅长表示布尔方程并解决它们。适用于很多事情)堆(一个树,其中节点的父节点总是与节点的子节点保持某种关系,例如,节点的父级总是大于它的每个子节点(最大堆))优先级队列(实际上只有最小堆和最大堆,有助于维护大量元素的顺序,例如,应该首先删除具有最高值的项目)哈希表(具有各种查找策略和桶溢出处理)平衡的二进制搜索树(每种都有自己的优点)RB树(当以有序方式插入、查找、删除和迭代时,总体良好)Avl树(查找速度比RB快,但其他方面与RB非常相似)Splay树(当最近使用的节点可能被重用时,查找速度更快)融合树(利用快速乘法获得更好的查找时间)B+树(用于数据库和文件系统中的索引,当从索引读取/写入索引的延迟很长时非常有效)。空间索引(非常适合查询点/圆/矩形/线/立方体是否彼此接近或包含在其中)BSP树四叉树八叉树范围树许多相似但略有不同的树木,不同的尺寸区间树(很好地找到重叠区间,线性)图邻接列表(基本上是边的列表)邻接矩阵(表示图的有向边的表,每边一个位。对于图遍历非常快速)

这些是我能想到的。维基百科上还有更多关于数据结构的内容

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

Fenwick树(或二进制索引树)是一个值得添加的工具。如果您有一个计数器数组,并且需要在查询累积计数时不断更新它们(如PPM压缩),Fenwick树将在O(logn)时间内完成所有操作,并且不需要额外的空间。另请参阅本面漆教程,了解详细介绍。

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。