我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。

我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。

有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。


当前回答

再说一次,尽管这是一个老问题,但它非常相关!我发现了一个简单的方法来规范化某些列,而不需要任何包:

normFunc <- function(x){(x-mean(x, na.rm = T))/sd(x, na.rm = T)}

例如

x<-rnorm(10,14,2)
y<-rnorm(10,7,3)
z<-rnorm(10,18,5)
df<-data.frame(x,y,z)

df[2:3] <- apply(df[2:3], 2, normFunc)

您将看到y和z列已经规范化。不需要软件包:-)

其他回答

这是三年前的。不过,我还是觉得有必要补充以下几点:

最常见的归一化是z变换,其中减去平均值并除以变量的标准差。结果将是mean=0, sd=1。

为此,你不需要任何包装。

zVar <- (myVar - mean(myVar)) / sd(myVar)

就是这样。

我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。

dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)

# check that we get mean of 0 and sd of 1
colMeans(scaled.dat)  # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)

使用内置函数是有品位的。比如这只猫:

dplyr包有两个函数可以做到这一点。

> require(dplyr)

要更改数据表的特定列,可以使用mutate_at()函数。要更改所有列,可以使用mutate_all。

下面是使用这些函数来标准化数据的简单示例。

改变特定的列:

dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_at(vars("a", "c"), scale)) # can also index columns by number, e.g., vars(c(1,3))

> apply(dt, 2, mean)
            a             b             c 
 1.783137e-16  5.064855e-01 -5.245395e-17 

> apply(dt, 2, sd)
        a         b         c 
1.0000000 0.2906622 1.0000000 

改变所有列:

dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_all(scale))

> apply(dt, 2, mean)
            a             b             c 
-1.728266e-16  9.291994e-17  1.683551e-16 

> apply(dt, 2, sd)
a b c 
1 1 1 

缩放可以用于完整的数据帧和特定的列。 对于特定的列,可以使用以下代码:

trainingSet[, 3:7] = scale(trainingSet[, 3:7]) # For column 3 to 7
trainingSet[, 8] = scale(trainingSet[, 8]) # For column 8 

全数据帧

trainingSet <- scale(trainingSet)

在我碰巧发现这条线索之前,我也有同样的问题。我有用户依赖的列类型,所以我写了一个for循环遍历它们并获得所需的列。也许有更好的方法,但这个方法很好地解决了问题:

 for(i in 1:length(colnames(df))) {
        if(class(df[,i]) == "numeric" || class(df[,i]) == "integer") {
            df[,i] <- as.vector(scale(df[,i])) }
        }

作为。向量是一个必要的部分,因为scale做rownames x 1矩阵这通常不是你想要的在data。frame中。