我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。

有人能帮忙吗?


当前回答

虽然@silvado的答案是好的,如果你把df.map(str)改为df.astype(str),它会更快:

import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})

In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop

In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop

其他回答

可以使用DataFrame的assign方法:

df= (pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']}).
  assign(period=lambda x: x.Year+x.quarter ))

泛化到多个列,为什么不呢:

columns = ['whatever', 'columns', 'you', 'choose']
df['period'] = df[columns].astype(str).sum(axis=1)

我把…

listofcols = ['col1','col2','col3']
df['combined_cols'] = ''

for column in listofcols:
    df['combined_cols'] = df['combined_cols'] + ' ' + df[column]
'''

如果两个列都是字符串,你可以直接连接它们:

df["period"] = df["Year"] + df["quarter"]

如果一个(或两个)列不是字符串类型的,你应该先转换它(它们),

df["period"] = df["Year"].astype(str) + df["quarter"]

这样做时要当心nan !


如果你需要连接多个字符串列,你可以使用agg:

df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1)

其中“-”是分隔符。

小数据集(< 150行)

[''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]

或者稍慢但更紧凑:

df.Year.str.cat(df.quarter)

更大的数据集(> 150rows)

df['Year'].astype(str) + df['quarter']

更新:定时图熊猫0.23.4

让我们在200K行上测试一下:

In [250]: df
Out[250]:
   Year quarter
0  2014      q1
1  2015      q2

In [251]: df = pd.concat([df] * 10**5)

In [252]: df.shape
Out[252]: (200000, 2)

更新:新的计时使用熊猫0.19.0

没有CPU/GPU优化的计时(从最快到最慢排序):

In [107]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 131 ms per loop

In [106]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 161 ms per loop

In [108]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 189 ms per loop

In [109]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 567 ms per loop

In [110]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 584 ms per loop

In [111]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 24.7 s per loop

使用CPU/GPU优化计时:

In [113]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 53.3 ms per loop

In [114]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 65.5 ms per loop

In [115]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 79.9 ms per loop

In [116]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop

In [117]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop

In [118]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 9.38 s per loop

回答@anton-vbr的贡献