我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
使用.combine_first。
df['Period'] = df['Year'].combine_first(df['Quarter'])
其他回答
使用.combine_first。
df['Period'] = df['Year'].combine_first(df['Quarter'])
.str访问器的cat()方法非常适用于此:
>>> import pandas as pd
>>> df = pd.DataFrame([["2014", "q1"],
... ["2015", "q3"]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 q1
1 2015 q3
>>> df['Period'] = df.Year.str.cat(df.Quarter)
>>> print(df)
Year Quarter Period
0 2014 q1 2014q1
1 2015 q3 2015q3
Cat()甚至允许你添加分隔符,例如,假设你只有整数年和周期,你可以这样做:
>>> import pandas as pd
>>> df = pd.DataFrame([[2014, 1],
... [2015, 3]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 1
1 2015 3
>>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
>>> print(df)
Year Quarter Period
0 2014 1 2014q1
1 2015 3 2015q3
连接多个列只是将一个序列列表或一个包含除第一列外的所有数据帧作为参数传递给在第一列(series)上调用的str.cat():
>>> df = pd.DataFrame(
... [['USA', 'Nevada', 'Las Vegas'],
... ['Brazil', 'Pernambuco', 'Recife']],
... columns=['Country', 'State', 'City'],
... )
>>> df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ')
>>> print(df)
Country State City AllTogether
0 USA Nevada Las Vegas USA - Nevada - Las Vegas
1 Brazil Pernambuco Recife Brazil - Pernambuco - Recife
请注意,如果您的pandas dataframe/series有空值,您需要包括参数na_rep来用字符串替换NaN值,否则合并的列将默认为NaN。
虽然@silvado的答案是好的,如果你把df.map(str)改为df.astype(str),它会更快:
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop
In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop
下面是一个我觉得非常通用的实现:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame([[0, 'the', 'quick', 'brown'],
...: [1, 'fox', 'jumps', 'over'],
...: [2, 'the', 'lazy', 'dog']],
...: columns=['c0', 'c1', 'c2', 'c3'])
In [3]: def str_join(df, sep, *cols):
...: from functools import reduce
...: return reduce(lambda x, y: x.astype(str).str.cat(y.astype(str), sep=sep),
...: [df[col] for col in cols])
...:
In [4]: df['cat'] = str_join(df, '-', 'c0', 'c1', 'c2', 'c3')
In [5]: df
Out[5]:
c0 c1 c2 c3 cat
0 0 the quick brown 0-the-quick-brown
1 1 fox jumps over 1-fox-jumps-over
2 2 the lazy dog 2-the-lazy-dog
你可以使用lambda:
combine_lambda = lambda x: '{}{}'.format(x.Year, x.quarter)
然后使用它来创建新列:
df['period'] = df.apply(combine_lambda, axis = 1)