Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。
其他回答
我发现cprofiler和其他资源更多地用于优化目的,而不是调试。
我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。
模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy
Use:
from speed_testpy import ScriptProfilerPy
ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()
输出:
还值得一提的是GUI cProfile转储查看器RunSnakeRun。它允许您排序和选择,从而放大程序的相关部分。图片中矩形的大小与所用时间成正比。如果您将鼠标悬停在一个矩形上,它将突出显示表中的调用以及地图上的任何位置。双击矩形时,它会放大该部分。它将显示谁调用了该部分以及该部分调用了什么。
描述性信息非常有用。它向您显示了该位的代码,当您处理内置库调用时,该代码会很有用。它告诉要查找代码的文件和行。
还想指出,OP说的是“剖析”,但似乎他是指“时机”。请记住,程序在评测时运行速度会变慢。
不久前,我制作了pycallgraph,它从您的Python代码生成可视化。编辑:我已经将示例更新为使用3.3,这是本文撰写时的最新版本。
在pip安装pycallgraph并安装GraphViz之后,您可以从命令行运行它:
pycallgraph graphviz -- ./mypythonscript.py
或者,您可以分析代码的特定部分:
from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput
with PyCallGraph(output=GraphvizOutput()):
code_to_profile()
其中任何一个都将生成类似下图的pycallgraph.png文件:
cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。
python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree
所需的系统包:
kcachegrind(Linux)、qcachegrind(MacOs)
Ubuntu上的设置:
apt-get install kcachegrind
pip install pyprof2calltree
结果:
值得指出的是,使用探查器仅在主线程上有效(默认情况下),如果使用它们,您将无法从其他线程获得任何信息。这可能有点棘手,因为探查器文档中完全没有提到它。
如果您还想评测线程,那么您需要查看文档中的threading.setprofile()函数。
您也可以创建自己的线程.Thread子类:
class ProfiledThread(threading.Thread):
# Overrides threading.Thread.run()
def run(self):
profiler = cProfile.Profile()
try:
return profiler.runcall(threading.Thread.run, self)
finally:
profiler.dump_stats('myprofile-%d.profile' % (self.ident,))
并使用ProfiledThread类而不是标准类。它可能会给你更多的灵活性,但我不确定它是否值得,特别是如果你使用的是不使用你的类的第三方代码。