Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:

import cProfile
cProfile.runctx('foo()', None, locals())

其他回答

有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。

我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。

无命令行分析

def count():
    from math import sqrt
    for x in range(10**5):
        sqrt(x)

if __name__ == '__main__':
    import cProfile, pstats
    cProfile.run("count()", "{}.profile".format(__file__))
    s = pstats.Stats("{}.profile".format(__file__))
    s.strip_dirs()
    s.sort_stats("time").print_stats(10)

有关更多信息,请参阅文档或其他答案。

cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:

import cProfile
cProfile.runctx('foo()', None, locals())

获取IPython笔记本上的快速配置文件统计信息。人们可以将line_profiler和memory_profile直接嵌入到笔记本中。

另一个有用的包是Pympler。它是一个强大的评测包,能够跟踪类、对象、函数、内存泄漏等。

了解了!

!pip install line_profiler
!pip install memory_profiler
!pip install pympler

加载它!

%load_ext line_profiler
%load_ext memory_profiler

使用它!


%时间

%time print('Outputs CPU time,Wall Clock time') 
#CPU times: user 2 µs, sys: 0 ns, total: 2 µs Wall time: 5.96 µs

给予:

CPU时间:CPU级执行时间systimes:系统级执行时间总计:CPU时间+系统时间墙上时间:墙上时钟时间


%计时

%timeit -r 7 -n 1000 print('Outputs execution time of the snippet') 
#1000 loops, best of 7: 7.46 ns per loop

给出给定循环次数(n)中的最佳运行次数(r)。输出系统缓存的详细信息:当代码片段被多次执行时,系统会缓存一些操作并不再执行,这可能会影响概要文件报告的准确性。


%普鲁士人

%prun -s cumulative 'Code to profile' 

给予:

函数调用数(ncall)每个函数调用有个条目(不同)每次呼叫所用时间(百分比)到函数调用为止的时间(cumtime)调用的函数/模块的名称等。。。


%记忆,记忆

%memit 'Code to profile'
#peak memory: 199.45 MiB, increment: 0.00 MiB

给予:

内存使用情况


%低压运行

#Example function
def fun():
  for i in range(10):
    print(i)

#Usage: %lprun <name_of_the_function> function
%lprun -f fun fun()

给予:

按行统计


系统大小

sys.getsizeof('code to profile')
# 64 bytes

返回对象的大小(以字节为单位)。


来自pympler的asizeof()

from pympler import asizeof
obj = [1,2,("hey","ha"),3]
print(asizeof.asizeof(obj,stats=4))

pympler.asizeof可用于调查某些Python对象消耗多少内存。与sys.getsizeof不同,asizeof递归地调整对象大小


来自pympler的跟踪器

from pympler import tracker
tr = tracker.SummaryTracker()
def fun():
  li = [1,2,3]
  di = {"ha":"haha","duh":"Umm"}
fun()
tr.print_diff()

跟踪函数的生存期。

Pympler包包含大量用于评测代码的高实用函数。这里无法涵盖所有这些。有关详细的概要文件实现,请参阅随附的文档。

Pympler文档

cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。

python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree

所需的系统包:

kcachegrind(Linux)、qcachegrind(MacOs)

Ubuntu上的设置:

apt-get install kcachegrind 
pip install pyprof2calltree

结果:

在研究这个主题时,我遇到了一个叫做SnakeViz的便捷工具。SnakeViz是一个基于web的评测可视化工具。它非常容易安装和使用。我通常使用的方法是用%prun生成一个stat文件,然后在SnakeViz中进行分析。

所使用的主要viz技术是下图所示的Sunburst图表,其中函数调用的层次结构被安排为弧和时间信息的层,以其角度宽度编码。

最好的是你可以与图表互动。例如,要放大,可以单击一个弧,弧及其后代将被放大为新的阳光,以显示更多细节。