Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
当我不是服务器的根用户时,我使用lsprofcalltree.py并像这样运行我的程序:
python lsprofcalltree.py -o callgrind.1 test.py
然后我可以用任何callgrind兼容的软件打开报告,比如qcachegrind
其他回答
python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code
python文档也是如此:http://docs.python.org/library/profile.html
如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:
python -m cProfile -s time mine.py <args>
或存档:
python -m cProfile -o output.file mine.py <args>
PS>如果您使用的是Ubuntu,请确保安装python配置文件
apt-get install python-profiler
如果输出到文件,可以使用以下工具获得良好的可视化效果
PyCallGraph:创建调用图图像的工具安装:
pip install pycallgraph
run:
pycallgraph mine.py args
视图:
gimp pycallgraph.png
你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常
dot:graph对于cairo渲染器位图太大。缩放0.257079以适合
这使我的图像变得难以使用。所以我通常创建svg文件:
pycallgraph -f svg -o pycallgraph.svg mine.py <args>
PS>确保安装graphviz(提供点程序):
pip install graphviz
使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:
pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg
不久前,我制作了pycallgraph,它从您的Python代码生成可视化。编辑:我已经将示例更新为使用3.3,这是本文撰写时的最新版本。
在pip安装pycallgraph并安装GraphViz之后,您可以从命令行运行它:
pycallgraph graphviz -- ./mypythonscript.py
或者,您可以分析代码的特定部分:
from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput
with PyCallGraph(output=GraphvizOutput()):
code_to_profile()
其中任何一个都将生成类似下图的pycallgraph.png文件:
cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。
python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree
所需的系统包:
kcachegrind(Linux)、qcachegrind(MacOs)
Ubuntu上的设置:
apt-get install kcachegrind
pip install pyprof2calltree
结果:
还值得一提的是GUI cProfile转储查看器RunSnakeRun。它允许您排序和选择,从而放大程序的相关部分。图片中矩形的大小与所用时间成正比。如果您将鼠标悬停在一个矩形上,它将突出显示表中的调用以及地图上的任何位置。双击矩形时,它会放大该部分。它将显示谁调用了该部分以及该部分调用了什么。
描述性信息非常有用。它向您显示了该位的代码,当您处理内置库调用时,该代码会很有用。它告诉要查找代码的文件和行。
还想指出,OP说的是“剖析”,但似乎他是指“时机”。请记住,程序在评测时运行速度会变慢。
对于像austin这样的统计分析器,不需要检测,这意味着您可以简单地使用
austin python3 my_script.py
原始输出不是很有用,但您可以将其传输到flamegraph.pl以获得该数据的火焰图表示,该火焰图提供了时间(以微秒为单位的实时)的细分。
austin python3 my_script.py | flamegraph.pl > my_script_profile.svg
或者,您也可以使用web应用程序Speedscope.app快速可视化收集的样本。如果您安装了pprof,还可以获取austin python(例如,pipx安装austin python)并使用austin2prof转换为pprof格式。
然而,如果您安装了VS Code,您可以使用Austin扩展来获得更交互式的体验,包括源代码热图、顶级函数和收集的调用堆栈
如果您想使用终端,也可以使用TUI,它也具有实时图形模式: