我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
我发现的每个解决方案似乎只适用于列表中的每个对象都具有相同的长度。当列表中对象的长度不相等时,我需要将列表转换为data.frame。下面是我提出的基于R的解决方案。毫无疑问,这是非常低效的,但它似乎确实有效。
x1 <- c(2, 13)
x2 <- c(2, 4, 6, 9, 11, 13)
x3 <- c(1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13)
my.results <- list(x1, x2, x3)
# identify length of each list
my.lengths <- unlist(lapply(my.results, function (x) { length(unlist(x))}))
my.lengths
#[1] 2 6 20
# create a vector of values in all lists
my.values <- as.numeric(unlist(c(do.call(rbind, lapply(my.results, as.data.frame)))))
my.values
#[1] 2 13 2 4 6 9 11 13 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13
my.matrix <- matrix(NA, nrow = max(my.lengths), ncol = length(my.lengths))
my.cumsum <- cumsum(my.lengths)
mm <- 1
for(i in 1:length(my.lengths)) {
my.matrix[1:my.lengths[i],i] <- my.values[mm:my.cumsum[i]]
mm <- my.cumsum[i]+1
}
my.df <- as.data.frame(my.matrix)
my.df
# V1 V2 V3
#1 2 2 1
#2 13 4 1
#3 NA 6 2
#4 NA 9 3
#5 NA 11 3
#6 NA 13 4
#7 NA NA 5
#8 NA NA 5
#9 NA NA 6
#10 NA NA 7
#11 NA NA 7
#12 NA NA 8
#13 NA NA 9
#14 NA NA 9
#15 NA NA 10
#16 NA NA 11
#17 NA NA 11
#18 NA NA 12
#19 NA NA 13
#20 NA NA 13
其他回答
根据列表的结构,有一些tidyverse选项可以很好地处理长度不等的列表:
l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5)
, c = list(var.1 = 7, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = NA))
df <- dplyr::bind_rows(l)
df <- purrr::map_df(l, dplyr::bind_rows)
df <- purrr::map_df(l, ~.x)
# all create the same data frame:
# A tibble: 4 x 3
var.1 var.2 var.3
<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 NA
3 7 NA 9
4 10 11 NA
你也可以混合向量和数据帧:
library(dplyr)
bind_rows(
list(a = 1, b = 2),
data_frame(a = 3:4, b = 5:6),
c(a = 7)
)
# A tibble: 4 x 2
a b
<dbl> <dbl>
1 1 2
2 3 5
3 4 6
4 7 NA
更多的答案,以及这个问题的答案中的时间: 将列表转换为数据帧的最有效方法是什么?
最快的方法,不产生一个数据框架与列表,而不是向量的列似乎是(从马丁摩根的回答):
l <- list(list(col1="a",col2=1),list(col1="b",col2=2))
f = function(x) function(i) unlist(lapply(x, `[[`, i), use.names=FALSE)
as.data.frame(Map(f(l), names(l[[1]])))
如何使用map_函数和一个for循环?以下是我的解决方案:
list_to_df <- function(list_to_convert) {
tmp_data_frame <- data.frame()
for (i in 1:length(list_to_convert)) {
tmp <- map_dfr(list_to_convert[[i]], data.frame)
tmp_data_frame <- rbind(tmp_data_frame, tmp)
}
return(tmp_data_frame)
}
其中map_dfr将每个列表元素转换为data.frame,然后rbind将它们合并。
在你的情况下,我猜应该是:
converted_list <- list_to_df(l)
该方法使用一个tidyverse包(purrr)。
列表:
x <- as.list(mtcars)
将其转换为数据帧(更具体地说是tibble):
library(purrr)
map_df(x, ~.x)
编辑时间:2021年5月30日
这实际上可以通过dplyr中的bind_rows()函数实现。
x <- as.list(mtcars)
dplyr::bind_rows(x)
A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。
# Load the tidyverse
Library(tidyverse)
# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))
## Bind the rows
My_list %>% bind_rows()
结果是一个有两行的数据帧。