从Udacity的深度学习课程中,y_i的softmax仅仅是指数除以整个Y向量的指数之和:

其中S(y_i)是y_i的软最大函数e是指数函数j是no。输入向量Y中的列。

我试过以下几种方法:

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

scores = [3.0, 1.0, 0.2]
print(softmax(scores))

返回:

[ 0.8360188   0.11314284  0.05083836]

但建议的解决方案是:

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

它产生与第一个实现相同的输出,尽管第一个实现显式地取每列与Max的差值,然后除以和。

有人能用数学方法解释一下吗?一个是对的,另一个是错的?

实现在代码和时间复杂度方面是否相似?哪个更有效率?


当前回答

我想说,虽然从数学上讲,这两种方法都是正确的,但就实现而言,第一个方法更好。在计算softmax时,中间值可能会变得很大。两个大数的除法在数值上是不稳定的。这些笔记(来自斯坦福大学)提到了一个归一化技巧,这基本上就是你正在做的事情。

其他回答

我想补充一点对这个问题的理解。这里减去数组的最大值是正确的。但如果你运行另一篇文章中的代码,你会发现当数组是2D或更高维度时,它不会给你正确的答案。

在这里我给你一些建议:

为了得到max,试着沿着x轴做,你会得到一个1D数组。 重塑你的最大数组原始形状。 np。Exp得到指数值。 np。沿轴求和。 得到最终结果。

根据结果,你将通过做矢量化得到正确的答案。因为和大学作业有关,所以我不能把具体的代码贴在这里,如果你不明白我可以多给你一些建议。

我需要一些与Tensorflow的密集层输出兼容的东西。

来自@desertnaut的解决方案在本例中不起作用,因为我有一批数据。因此,我提出了另一个解决方案,应该在这两种情况下工作:

def softmax(x, axis=-1):
    e_x = np.exp(x - np.max(x)) # same code
    return e_x / e_x.sum(axis=axis, keepdims=True)

结果:

logits = np.asarray([
    [-0.0052024,  -0.00770216,  0.01360943, -0.008921], # 1
    [-0.0052024,  -0.00770216,  0.01360943, -0.008921]  # 2
])

print(softmax(logits))

#[[0.2492037  0.24858153 0.25393605 0.24827873]
# [0.2492037  0.24858153 0.25393605 0.24827873]]

参考:Tensorflow softmax

在上面的回答中已经回答了很多细节。Max被减去以避免溢出。我在这里添加了python3中的另一个实现。

import numpy as np
def softmax(x):
    mx = np.amax(x,axis=1,keepdims = True)
    x_exp = np.exp(x - mx)
    x_sum = np.sum(x_exp, axis = 1, keepdims = True)
    res = x_exp / x_sum
    return res

x = np.array([[3,2,4],[4,5,6]])
print(softmax(x))

从数学的角度看,两边是相等的。

这很容易证明。m = max (x)。现在你的函数softmax返回一个向量,它的第i个坐标等于

注意,这适用于任何m,因为对于所有(甚至是复数)数e^m != 0

from computational complexity point of view they are also equivalent and both run in O(n) time, where n is the size of a vector. from numerical stability point of view, the first solution is preferred, because e^x grows very fast and even for pretty small values of x it will overflow. Subtracting the maximum value allows to get rid of this overflow. To practically experience the stuff I was talking about try to feed x = np.array([1000, 5]) into both of your functions. One will return correct probability, the second will overflow with nan your solution works only for vectors (Udacity quiz wants you to calculate it for matrices as well). In order to fix it you need to use sum(axis=0)

我的建议是:

def softmax(z):
    z_norm=np.exp(z-np.max(z,axis=0,keepdims=True))
    return(np.divide(z_norm,np.sum(z_norm,axis=0,keepdims=True)))

它既适用于随机,也适用于批量。 欲了解更多详情,请参阅: https://medium.com/@ravish1729/analysis-of-softmax-function-ad058d6a564d