如何检索队列中尚未处理的任务列表?


当前回答

subprocess.run:

import subprocess
import re
active_process_txt = subprocess.run(['celery', '-A', 'my_proj', 'inspect', 'active'],
                                        stdout=subprocess.PIPE).stdout.decode('utf-8')
return len(re.findall(r'worker_pid', active_process_txt))

注意使用your_proj更改my_proj

其他回答

这在我的申请中很奏效:

def get_celery_queue_active_jobs(queue_name):
    connection = <CELERY_APP_INSTANCE>.connection()

    try:
        channel = connection.channel()
        name, jobs, consumers = channel.queue_declare(queue=queue_name, passive=True)
        active_jobs = []

        def dump_message(message):
            active_jobs.append(message.properties['application_headers']['task'])

        channel.basic_consume(queue=queue_name, callback=dump_message)

        for job in range(jobs):
            connection.drain_events()

        return active_jobs
    finally:
        connection.close()

Active_jobs将是一个字符串列表,对应于队列中的任务。

不要忘记将CELERY_APP_INSTANCE替换为您自己的。

感谢@ashish在这里为我指出了正确的方向:https://stackoverflow.com/a/19465670/9843399

如果你不使用优先级任务,这其实很简单,如果你使用的是Redis。获取任务计数:

redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

但是,优先级任务在redis中使用不同的键,所以整体情况稍微复杂一些。总的来说,您需要为任务的每个优先级查询redis。在python中(以及在Flower项目中),它看起来像:

PRIORITY_SEP = '\x06\x16'
DEFAULT_PRIORITY_STEPS = [0, 3, 6, 9]


def make_queue_name_for_pri(queue, pri):
    """Make a queue name for redis

    Celery uses PRIORITY_SEP to separate different priorities of tasks into
    different queues in Redis. Each queue-priority combination becomes a key in
    redis with names like:

     - batch1\x06\x163 <-- P3 queue named batch1

    There's more information about this in Github, but it doesn't look like it 
    will change any time soon:

      - https://github.com/celery/kombu/issues/422

    In that ticket the code below, from the Flower project, is referenced:

      - https://github.com/mher/flower/blob/master/flower/utils/broker.py#L135

    :param queue: The name of the queue to make a name for.
    :param pri: The priority to make a name with.
    :return: A name for the queue-priority pair.
    """
    if pri not in DEFAULT_PRIORITY_STEPS:
        raise ValueError('Priority not in priority steps')
    return '{0}{1}{2}'.format(*((queue, PRIORITY_SEP, pri) if pri else
                                (queue, '', '')))


def get_queue_length(queue_name='celery'):
    """Get the number of tasks in a celery queue.

    :param queue_name: The name of the queue you want to inspect.
    :return: the number of items in the queue.
    """
    priority_names = [make_queue_name_for_pri(queue_name, pri) for pri in
                      DEFAULT_PRIORITY_STEPS]
    r = redis.StrictRedis(
        host=settings.REDIS_HOST,
        port=settings.REDIS_PORT,
        db=settings.REDIS_DATABASES['CELERY'],
    )
    return sum([r.llen(x) for x in priority_names])

如果你想要获得一个实际的任务,你可以使用以下方法:

redis-cli -h HOST -p PORT -n DATABASE_NUMBER lrange QUEUE_NAME 0 -1

从那里,您必须反序列化返回的列表。以我为例,我可以通过以下方法来实现:

r = redis.StrictRedis(
    host=settings.REDIS_HOST,
    port=settings.REDIS_PORT,
    db=settings.REDIS_DATABASES['CELERY'],
)
l = r.lrange('celery', 0, -1)
pickle.loads(base64.decodestring(json.loads(l[0])['body']))

请注意,反序列化可能需要一些时间,您需要调整上面的命令以处理不同的优先级。

据我所知,芹菜没有提供API来检查队列中等待的任务。这是特定于代理的。例如,如果你使用Redis作为代理,那么检查在芹菜(默认)队列中等待的任务就像这样简单:

连接到代理 在芹菜列表中列出项目(以LRANGE命令为例)

请记住,这些任务等待可用的员工来挑选。您的集群可能有一些正在运行的任务——这些任务不会在这个列表中,因为它们已经被选中了。

检索特定队列中的任务的过程是特定于代理的。

要从后端检索任务,使用这个

from amqplib import client_0_8 as amqp
conn = amqp.Connection(host="localhost:5672 ", userid="guest",
                       password="guest", virtual_host="/", insist=False)
chan = conn.channel()
name, jobs, consumers = chan.queue_declare(queue="queue_name", passive=True)

如果您控制任务的代码,那么您可以通过让任务在第一次执行时触发一个微不足道的重试来解决这个问题,然后检查inspect().reserved()。重试将任务注册到结果后端,芹菜可以看到这一点。任务必须接受self或context作为第一个参数,这样我们才能访问重试计数。

@task(bind=True)
def mytask(self):
    if self.request.retries == 0:
        raise self.retry(exc=MyTrivialError(), countdown=1)
    ...

这个解决方案与代理无关。你不必担心你是用RabbitMQ还是Redis来存储任务。

编辑:经过测试,我发现这只是一个部分的解决方案。预留的大小受限于worker的预取设置。