我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

下面是一个通用日期范围函数的代码,类似于Ber的答案,但更灵活:

def count_timedelta(delta, step, seconds_in_interval):
    """Helper function for iterate.  Finds the number of intervals in the timedelta."""
    return int(delta.total_seconds() / (seconds_in_interval * step))


def range_dt(start, end, step=1, interval='day'):
    """Iterate over datetimes or dates, similar to builtin range."""
    intervals = functools.partial(count_timedelta, (end - start), step)

    if interval == 'week':
        for i in range(intervals(3600 * 24 * 7)):
            yield start + datetime.timedelta(weeks=i) * step

    elif interval == 'day':
        for i in range(intervals(3600 * 24)):
            yield start + datetime.timedelta(days=i) * step

    elif interval == 'hour':
        for i in range(intervals(3600)):
            yield start + datetime.timedelta(hours=i) * step

    elif interval == 'minute':
        for i in range(intervals(60)):
            yield start + datetime.timedelta(minutes=i) * step

    elif interval == 'second':
        for i in range(intervals(1)):
            yield start + datetime.timedelta(seconds=i) * step

    elif interval == 'millisecond':
        for i in range(intervals(1 / 1000)):
            yield start + datetime.timedelta(milliseconds=i) * step

    elif interval == 'microsecond':
        for i in range(intervals(1e-6)):
            yield start + datetime.timedelta(microseconds=i) * step

    else:
        raise AttributeError("Interval must be 'week', 'day', 'hour' 'second', \
            'microsecond' or 'millisecond'.")

其他回答

Numpy的arange函数可以应用于日期:

import numpy as np
from datetime import datetime, timedelta
d0 = datetime(2009, 1,1)
d1 = datetime(2010, 1,1)
dt = timedelta(days = 1)
dates = np.arange(d0, d1, dt).astype(datetime)

astype的用途是从numpy转换。Datetime64到datetime数组。datetime对象。

这可能更清楚:

from datetime import date, timedelta

start_date = date(2019, 1, 1)
end_date = date(2020, 1, 1)
delta = timedelta(days=1)
while start_date <= end_date:
    print(start_date.strftime("%Y-%m-%d"))
    start_date += delta

显示从今天开始的最后n天:

import datetime
for i in range(0, 100):
    print((datetime.date.today() + datetime.timedelta(i)).isoformat())

输出:

2016-06-29
2016-06-30
2016-07-01
2016-07-02
2016-07-03
2016-07-04

为什么有两个嵌套迭代?对我来说,它只用一次迭代就产生了相同的数据列表:

for single_date in (start_date + timedelta(n) for n in range(day_count)):
    print ...

没有列表被存储,只有一个生成器被迭代。此外,生成器中的“if”似乎是不必要的。

毕竟,线性序列应该只需要一个迭代器,而不是两个。

与John Machin讨论后更新:

也许最优雅的解决方案是使用生成器函数来完全隐藏/抽象日期范围内的迭代:

from datetime import date, timedelta

def daterange(start_date, end_date):
    for n in range(int((end_date - start_date).days)):
        yield start_date + timedelta(n)

start_date = date(2013, 1, 1)
end_date = date(2015, 6, 2)
for single_date in daterange(start_date, end_date):
    print(single_date.strftime("%Y-%m-%d"))

注意:为了与内置的range()函数保持一致,此迭代在到达end_date之前停止。因此,对于包容性迭代使用第二天,就像使用range()一样。

在元组中存储范围参数的可逆步骤略有不同。

def date_range(start, stop, step=1, inclusive=False):
    day_count = (stop - start).days
    if inclusive:
        day_count += 1

    if step > 0:
        range_args = (0, day_count, step)
    elif step < 0:
        range_args = (day_count - 1, -1, step)
    else:
        raise ValueError("date_range(): step arg must be non-zero")

    for i in range(*range_args):
        yield start + timedelta(days=i)