我想找出我的数据的每一列中NaN的数量。
当前回答
在我的代码中使用@sushmit提出的解决方案。
同样的一种可能的变体也可以是
colNullCnt = []
for z in range(len(df1.cols)):
colNullCnt.append([df1.cols[z], sum(pd.isnull(trainPd[df1.cols[z]]))])
这样做的好处是,它将返回df中每一列的结果。
其他回答
你可以使用value_counts方法打印np.nan的值
s.value_counts(dropna = False)[np.nan]
根据给出的答案和一些改进,这是我的方法
def PercentageMissin(Dataset):
"""this function will return the percentage of missing values in a dataset """
if isinstance(Dataset,pd.DataFrame):
adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
for col in Dataset.columns:
adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
else:
raise TypeError("can only be used with panda dataframe")
让我们假设df是一个熊猫数据框架。
然后,
df.isnull().sum(axis = 0)
这将给出每列中NaN值的数量。
如果你需要,每一行的NaN值,
df.isnull().sum(axis = 1)
希望这能有所帮助,
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
df.isnull().sum()/len(df) * 100
Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式