我想找出我的数据的每一列中NaN的数量。
当前回答
希望这能有所帮助,
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
df.isnull().sum()/len(df) * 100
Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres
其他回答
我使用这个循环来计算每一列的缺失值:
# check missing values
import numpy as np, pandas as pd
for col in df:
print(col +': '+ np.str(df[col].isna().sum()))
另一个尚未被建议的简单选项是,为了只计算NaN,将在形状中添加以返回具有NaN的行数。
df[df['col_name'].isnull()]['col_name'].shape
df.isnull().sum()
//type: <class 'pandas.core.series.Series'>
or
df.column_name.isnull().sum()
//type: <type 'numpy.int64'>
对于你的任务,你可以使用pandas.DataFrame.dropna (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html):
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': [1, 2, 3, 4, np.nan],
'b': [1, 2, np.nan, 4, np.nan],
'c': [np.nan, 2, np.nan, 4, np.nan]})
df = df.dropna(axis='columns', thresh=3)
print(df)
使用thresh参数,您可以声明DataFrame中所有列的NaN值的最大计数。
代码输出:
a b
0 1.0 1.0
1 2.0 2.0
2 3.0 NaN
3 4.0 4.0
4 NaN NaN
让我们假设df是一个熊猫数据框架。
然后,
df.isnull().sum(axis = 0)
这将给出每列中NaN值的数量。
如果你需要,每一行的NaN值,
df.isnull().sum(axis = 1)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式