我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
重命名特定列
使用df.reame()函数并引用要重命名的列。并非所有列都必须重命名:
df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy)
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)
最小代码示例
df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df
a b c d e
0 x x x x x
1 x x x x x
2 x x x x x
以下方法都可以工作并产生相同的输出:
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1) # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'}) # old method
df2
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
请记住将结果指定回,因为修改不在原位。或者,指定inplace=True:
df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
在v0.25中,如果指定了要重命名的无效列,还可以指定errors='raise'来引发错误。请参阅v0.25 rename()文档。
重新分配列标题
使用df.set_axis(),axis=1,inplace=False(返回副本)。
df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
这将返回一个副本,但您可以通过设置inplace=True来修改DataFrame(这是<=0.24版本的默认行为,但将来可能会更改)。
您也可以直接分配标题:
df.columns = ['V', 'W', 'X', 'Y', 'Z']
df
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
其他回答
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。
另一种替换原始列标签的方法是从原始列标签中删除不需要的字符(此处为“$”)。
这可以通过在df.columns上运行for循环并将剥离的列附加到df.column来完成。
相反,我们可以通过使用下面的列表理解在一个语句中巧妙地做到这一点:
df.columns = [col.strip('$') for col in df.columns]
(Python中的strip方法会从字符串的开头和结尾剥离给定的字符。)
许多panda函数都有一个就地参数。当设置为True时,转换将直接应用于调用它的数据帧。例如:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
或者,在某些情况下,您希望保留原始数据帧。如果创建数据帧是一项昂贵的任务,我经常看到人们陷入这种情况。例如,如果创建数据帧需要查询雪花数据库。在这种情况下,只需确保将inplace参数设置为False。
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
如果这些类型的转换是您经常做的,那么您还可以研究一些不同的panda GUI工具。我是一个叫做水户的人的创造者。它是一个电子表格,可以自动将您的编辑转换为python代码。
让我们通过一个小例子来理解重命名。。。
使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6
我的单线回答是
df.columns=df_new_cols
它是最好的,处理时间为1/3。
timeit比较:
df有七列。我正在尝试更改一些名称。
%timeit df.rename(columns={old_col:new_col for (old_col,new_col) in zip(df_old_cols,df_new_cols)},inplace=True)
214 µs ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df.rename(columns=dict(zip(df_old_cols,df_new_cols)),inplace=True)
212 µs ± 7.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df.columns = df_new_cols
72.9 µs ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)