我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
这真的很简单。只需使用:
df.columns = ['Name1', 'Name2', 'Name3'...]
它将按照您输入的顺序分配列名。
其他回答
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
请注意,前面答案中的方法不适用于MultiIndex。对于MultiIndex,您需要执行以下操作:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
由于您只想删除所有列名中的$符号,因此只需执行以下操作:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
让我们通过一个小例子来理解重命名。。。
使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6
假设这是您的数据帧。
可以使用两种方法重命名列。
使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})
同样,您可以更改任何行或列。