在python中旋转列表最有效的方法是什么? 现在我有这样的东西:

>>> def rotate(l, n):
...     return l[n:] + l[:n]
... 
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]

有没有更好的办法?


当前回答

我以这个成本模型作为参考:

http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model

切片列表和连接两个子列表的方法是线性时间操作。我建议使用pop,这是一个常数时间操作,例如:

def shift(list, n):
    for i in range(n)
        temp = list.pop()
        list.insert(0, temp)

其他回答

我是“老派”,我定义了最低延迟,处理器时间和内存使用效率,我们的克星是臃肿的库。所以只有一个正确的方法:

    def rotatel(nums):
        back = nums.pop(0)
        nums.append(back)
        return nums

另一个选择:

def move(arr, n):
    return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]

我也对此感兴趣,并将一些建议的解决方案与perfplot(我的一个小项目)进行了比较。

事实证明凯利·邦迪的建议

tmp = data[shift:]
tmp += data[:shift]

在所有轮班中都表现良好。

从本质上讲,perfplot执行增加大型数组的移位并测量时间。以下是调查结果:

Shift = 1:

Shift = 100:


代码重现情节:

import numpy
import perfplot
import collections


shift = 100


def list_append(data):
    return data[shift:] + data[:shift]


def list_append2(data):
    tmp = data[shift:]
    tmp += data[:shift]
    return tmp


def shift_concatenate(data):
    return numpy.concatenate([data[shift:], data[:shift]])


def roll(data):
    return numpy.roll(data, -shift)


def collections_deque(data):
    items = collections.deque(data)
    items.rotate(-shift)
    return items


def pop_append(data):
    data = data.copy()
    for _ in range(shift):
        data.append(data.pop(0))
    return data


b = perfplot.bench(
    setup=lambda n: numpy.random.rand(n).tolist(),
    kernels=[
        list_append,
        list_append2,
        roll,
        shift_concatenate,
        collections_deque,
        pop_append,
    ],
    n_range=[2 ** k for k in range(7, 20)],
    xlabel="len(data)",
)
b.show()
b.save("shift100.png")

下面是一个高效的算法,不需要使用任何额外的数据结构:

旋转(nums: List[int], k: int):

    k = k%len(nums)
    l, r = 0, len(nums)-1
    while (l<r):
        nums[l], nums[r]= nums[r], nums[l]
        l,r=l+1,r-1
    
    l,r = 0, k-1
    while (l<r):
        nums[l], nums[r]=nums[r], nums[l]
        l,r=l+1,r-1
        
    l,r=k,len(nums)-1
    while (l<r):
        nums[l], nums[r]=nums[r], nums[l]
        l,r=l+1,r-1
def solution(A, K):
    if len(A) == 0:
        return A

    K = K % len(A)

    return A[-K:] + A[:-K]

# use case
A = [1, 2, 3, 4, 5, 6]
K = 3
print(solution(A, K))

例如,给定

A = [3, 8, 9, 7, 6]
K = 3

函数应该返回[9,7,6,3,8]。进行了三次轮换:

[3, 8, 9, 7, 6] -> [6, 3, 8, 9, 7]
[6, 3, 8, 9, 7] -> [7, 6, 3, 8, 9]
[7, 6, 3, 8, 9] -> [9, 7, 6, 3, 8]

再举一个例子

A = [0, 0, 0]
K = 1

函数应该返回[0,0,0]

鉴于

A = [1, 2, 3, 4]
K = 4

函数应该返回[1,2,3,4]