我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。

是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?


当前回答

为了补充@mrry的帖子,我整理了一个教程,解释如何用c++ API加载TensorFlow图。它非常简单,应该帮助您理解所有的部分是如何组合在一起的。这是它的核心:

要求:

巴泽尔安装 克隆TensorFlow回购

文件夹结构:

tensorflow tensorflow / | | /项目名称 Tensorflow / Tensorflow /|项目名称|/|项目名称|。Cc(例如https://gist.github.com/jimfleming/4202e529042c401b17b7) tensorflow / tensorflow / | |项目名称/构建

构建:

cc_binary(
    name = "<project name>",
    srcs = ["<project name>.cc"],
    deps = [
        "//tensorflow/core:tensorflow",
    ]
)

有两点需要注意,但可能有变通办法:

现在,构建需要在TensorFlow回购中进行。 编译后的二进制文件很大(103MB)。

https://medium.com/@jimfleming/loading-a-tensorflow-graph-with-the-c-api-4caaff88463f

其他回答

如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。

首先,在安装了protobuf和eigen之后,你想要构建Tensorflow:

./configure
bazel build //tensorflow:libtensorflow_cc.so

然后复制以下include头文件和动态共享库到/usr/local/lib和/usr/local/include:

mkdir /usr/local/include/tf
cp -r bazel-genfiles/ /usr/local/include/tf/
cp -r tensorflow /usr/local/include/tf/
cp -r third_party /usr/local/include/tf/
cp -r bazel-bin/libtensorflow_cc.so /usr/local/lib/

最后,使用一个示例编译:

g++ -std=c++11 -o tf_example \
-I/usr/local/include/tf \
-I/usr/local/include/eigen3 \
-g -Wall -D_DEBUG -Wshadow -Wno-sign-compare -w  \
-L/usr/local/lib/libtensorflow_cc \
`pkg-config --cflags --libs protobuf` -ltensorflow_cc tf_example.cpp

上面的答案足以说明如何构建库,但是如何收集头文件仍然很棘手。在这里我分享我用来复制必要的头文件的小脚本。

SOURCE是第一个参数,它是tensorflow SOURCE (build) direcoty; DST是第二个参数,包含目录保存收集的头文件。(如。在cmake中,include_directories(./collected_headers_here))。

#!/bin/bash

SOURCE=$1
DST=$2
echo "-- target dir is $DST"
echo "-- source dir is $SOURCE"

if [[ -e $DST ]];then
    echo "clean $DST"
    rm -rf $DST
    mkdir $DST
fi


# 1. copy the source code c++ api needs
mkdir -p $DST/tensorflow
cp -r $SOURCE/tensorflow/core $DST/tensorflow
cp -r $SOURCE/tensorflow/cc $DST/tensorflow
cp -r $SOURCE/tensorflow/c $DST/tensorflow

# 2. copy the generated code, put them back to
# the right directories along side the source code
if [[ -e $SOURCE/bazel-genfiles/tensorflow ]];then
    prefix="$SOURCE/bazel-genfiles/tensorflow"
    from=$(expr $(echo -n $prefix | wc -m) + 1)

    # eg. compiled protobuf files
    find $SOURCE/bazel-genfiles/tensorflow -type f | while read line;do
        #echo "procese file --> $line"
        line_len=$(echo -n $line | wc -m)
        filename=$(echo $line | rev | cut -d'/' -f1 | rev )
        filename_len=$(echo -n $filename | wc -m)
        to=$(expr $line_len - $filename_len)

        target_dir=$(echo $line | cut -c$from-$to)
        #echo "[$filename] copy $line $DST/tensorflow/$target_dir"
        cp $line $DST/tensorflow/$target_dir
    done
fi


# 3. copy third party files. Why?
# In the tf source code, you can see #include "third_party/...", so you need it
cp -r $SOURCE/third_party $DST

# 4. these headers are enough for me now.
# if your compiler complains missing headers, maybe you can find it in bazel-tensorflow/external
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/Eigen $DST
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/unsupported $DST
cp -RLf $SOURCE/bazel-tensorflow/external/protobuf_archive/src/google $DST
cp -RLf $SOURCE/bazel-tensorflow/external/com_google_absl/absl $DST

如果你希望避免使用Bazel构建项目和生成大型二进制文件,我已经组装了一个库,指导使用CMake TensorFlow c++库。你可以在这里找到它。总体思路如下:

克隆TensorFlow存储库。 在tensorflow/ build中添加一个构建规则(提供的规则不包括所有c++功能)。 构建TensorFlow共享库。 安装特定版本的Eigen和Protobuf,或将它们作为外部依赖项添加。 配置你的CMake项目来使用TensorFlow库。

首先,您应该按照这里的说明从Github下载源代码(您需要Bazel和最新版本的GCC)。

The C++ API (and the backend of the system) is in tensorflow/core. Right now, only the C++ Session interface, and the C API are being supported. You can use either of these to execute TensorFlow graphs that have been built using the Python API and serialized to a GraphDef protocol buffer. There is also an experimental feature for building graphs in C++, but this is currently not quite as full-featured as the Python API (e.g. no support for auto-differentiation at present). You can see an example program that builds a small graph in C++ here.

c++ API的第二部分是用于添加新的OpKernel的API,这是一个包含CPU和GPU的数值内核实现的类。在tensorflow/core/kernels中有许多如何构建这些操作的示例,以及在c++中添加新操作的教程。