从“函数”的角度来看,y组合子是一个计算机科学的概念。大多数程序员根本不了解组合子,如果他们听说过的话。
什么是y组合子? 组合符是如何工作的? 它们有什么用? 它们在过程语言中有用吗?
从“函数”的角度来看,y组合子是一个计算机科学的概念。大多数程序员根本不了解组合子,如果他们听说过的话。
什么是y组合子? 组合符是如何工作的? 它们有什么用? 它们在过程语言中有用吗?
当前回答
JavaScript中的y组合子:
var Y = function(f) {
return (function(g) {
return g(g);
})(function(h) {
return function() {
return f(h(h)).apply(null, arguments);
};
});
};
var factorial = Y(function(recurse) {
return function(x) {
return x == 0 ? 1 : x * recurse(x-1);
};
});
factorial(5) // -> 120
编辑: 通过查看代码,我学到了很多东西,但是如果没有一些背景知识,这个代码有点难以理解——对此我感到抱歉。有了其他答案提供的一些常识,你就可以开始分析正在发生的事情了。
The Y function is the "y-combinator". Now take a look at the var factorial line where Y is used. Notice you pass a function to it that has a parameter (in this example, recurse) that is also used later on in the inner function. The parameter name basically becomes the name of the inner function allowing it to perform a recursive call (since it uses recurse() in it's definition.) The y-combinator performs the magic of associating the otherwise anonymous inner function with the parameter name of the function passed to Y.
关于Y如何变魔术的完整解释,请查看链接文章(顺便说一下,不是我写的)。
其他回答
对于那些没有深入接触过函数式编程,现在也不想开始,但有点好奇的程序员:
Y组合子是一个公式,它允许你在这样的情况下实现递归:函数不能有名称,但可以作为参数传递,用作返回值,并在其他函数中定义。
它的工作原理是将函数作为参数传递给自己,这样它就可以调用自己。
它是lambda演算的一部分,lambda演算实际上是数学,但实际上是一种编程语言,是计算机科学尤其是函数式编程的基础。
Y组合子的日常实用价值是有限的,因为编程语言倾向于让你命名函数。
如果你需要在警察的队列中识别它,它看起来是这样的:
Y = λf.(λx。F (x x)) (λx。F (x x))
你通常可以发现它,因为重复的(λx。F (x x))
λ符号是希腊字母,这是λ演算的名字,有很多(λx.t)风格的术语因为这就是λ演算的样子。
我想知道从头开始建立这个系统是否有任何用处。让我们来看看。这是一个基本的递归阶乘函数:
function factorial(n) {
return n == 0 ? 1 : n * factorial(n - 1);
}
让我们重构并创建一个名为fact的新函数,它返回一个匿名的阶乘计算函数,而不是执行计算本身:
function fact() {
return function(n) {
return n == 0 ? 1 : n * fact()(n - 1);
};
}
var factorial = fact();
这有点奇怪,但这没什么问题。我们只是在每一步生成一个新的阶乘函数。
这个阶段的递归仍然相当明确。事实函数需要知道自己的名字。让我们参数化递归调用:
function fact(recurse) {
return function(n) {
return n == 0 ? 1 : n * recurse(n - 1);
};
}
function recurser(x) {
return fact(recurser)(x);
}
var factorial = fact(recurser);
这很好,但是递归仍然需要知道自己的名字。让我们把它参数化:
function recurser(f) {
return fact(function(x) {
return f(f)(x);
});
}
var factorial = recurser(recurser);
现在,我们不直接调用递归器(recurser),而是创建一个包装器函数,返回它的结果:
function Y() {
return (function(f) {
return f(f);
})(recurser);
}
var factorial = Y();
现在我们可以完全去掉递归的名字;它只是Y内部函数的一个参数,可以用函数本身替换:
function Y() {
return (function(f) {
return f(f);
})(function(f) {
return fact(function(x) {
return f(f)(x);
});
});
}
var factorial = Y();
唯一仍然引用的外部名称是fact,但现在应该清楚了,它也很容易参数化,创建完整的,通用的解决方案:
function Y(le) {
return (function(f) {
return f(f);
})(function(f) {
return le(function(x) {
return f(f)(x);
});
});
}
var factorial = Y(function(recurse) {
return function(n) {
return n == 0 ? 1 : n * recurse(n - 1);
};
});
我从http://www.mail-archive.com/boston-pm@mail.pm.org/msg02716.html中引用了这个,这是我几年前写的一个解释。
在本例中我将使用JavaScript,但许多其他语言也可以。
我们的目标是写出一个1的递归函数 变量只使用1变量的函数,没有 赋值,通过名称定义事物等(为什么这是我们的 目标是另一个问题,我们把它作为 我们所面临的挑战。)似乎不可能,是吧?作为 举个例子,让我们实现阶乘。
第一步是说我们可以很容易地做到这一点,如果我们 作弊了一点。使用二元函数和 我们至少可以避免使用 赋值来建立递归。
// Here's the function that we want to recurse.
X = function (recurse, n) {
if (0 == n)
return 1;
else
return n * recurse(recurse, n - 1);
};
// This will get X to recurse.
Y = function (builder, n) {
return builder(builder, n);
};
// Here it is in action.
Y(
X,
5
);
现在我们看看能不能少作弊。首先我们用 任务,但我们不需要。我们可以写成X和 Y内联。
// No assignment this time.
function (builder, n) {
return builder(builder, n);
}(
function (recurse, n) {
if (0 == n)
return 1;
else
return n * recurse(recurse, n - 1);
},
5
);
但是我们用两个变量的函数来得到一个1的函数 变量。我们能解决这个问题吗?一个叫 Haskell Curry有一个巧妙的技巧,如果你有好的高阶 那么你只需要一个变量的函数。的 证明是你可以从函数2(或更多) 一般情况下)变量以1变量为纯粹 像这样的机械文本转换:
// Original
F = function (i, j) {
...
};
F(i,j);
// Transformed
F = function (i) { return function (j) {
...
}};
F(i)(j);
在那里……完全一样。(这个技巧叫做 “模仿”它的发明者。Haskell也是一种语言 以哈斯克尔·库里命名。把它归为无用的琐事。) 现在只要把这个变换应用到任何地方,我们就得到 我们的最终版本。
// The dreaded Y-combinator in action!
function (builder) { return function (n) {
return builder(builder)(n);
}}(
function (recurse) { return function (n) {
if (0 == n)
return 1;
else
return n * recurse(recurse)(n - 1);
}})(
5
);
尽管试一试。Alert()返回,将其绑定到一个按钮,等等。 该代码不使用,递归地计算阶乘 2变量的赋值、声明或函数。(但 试图追踪它是如何工作的可能会让你头晕目眩。 递过来,没有推导,只是稍微重新格式化了一下 会导致代码令人困惑。)
可以将递归定义阶乘的4行替换为 任何你想要的递归函数。
以下是对尼古拉斯·曼库索(Nicholas Mancuso)在回答中提到的文章(完全值得一读)中提到的原始问题的回答,以及其他答案:
什么是y组合子?
y组合子是一个“函数”(或高阶函数——一个作用于其他函数的函数),它接受一个参数,这是一个非递归的函数,并返回该函数的一个递归版本。
有点递归=),但更深入的定义:
一个组合子-就是一个没有自由变量的lambda表达式。 自由变量-是一个变量,不是一个约束变量。 绑定变量—包含在lambda表达式体中的变量,该变量名作为其参数之一。
另一种思考方式是,combinator是这样一个lambda表达式,在其中,你可以在任何地方用它的定义替换一个组合子的名称,并且一切都仍然有效(如果combinator在lambda体中包含对自身的引用,你将进入一个无限循环)。
y组合子是一个定点组合子。
函数的不动点是函数定义域中映射到函数自身的一个元素。 也就是说,如果f(c) = c, c是函数f(x)的一个不动点 这意味着f(f(…f(c)…))= fn(c) = c
组合符是如何工作的?
下面的例子假设强+动态类型:
惰性(正规阶)y组合子: 此定义适用于具有lazy(也称为deferred, call-by-need)求值的语言——该求值策略将表达式的求值延迟到需要它的值时。
Y = λf.(λx.f(x x)) (λx.f(x x)) = λf.(λx.(x x)) (λx.f(x x))
这意味着,对于给定的函数f(它是非递归函数),可以通过计算λx得到对应的递归函数。F (x x)然后把这个表达式应用到自身上。
严格(应用阶)y组合子: 这个定义适用于具有严格求值策略(也包括热切求值和贪婪求值策略)的语言,在这种策略中,表达式一旦绑定到变量就会被求值。
Y = λf.(λx.f(λy.((x x) y))) (λx.f(λy.((x x) y))) = λf.(λx.(x x)) (λx.f(λy.((x x) y)))
它本质上和lazy一样,只是有一个额外的λ包装器来延迟lambda的体计算。我问了另一个问题,和这个话题有点相关。
它们有什么用?
借用Chris Ammerman的回答:Y-combinator泛化递归,抽象其实现,从而将其与函数的实际工作分离。
尽管Y-combinator有一些实际应用,但它主要是一个理论概念,理解它将扩展你的整体视野,并有可能提高你的分析和开发技能。
它们在过程语言中有用吗?
正如Mike Vanier所说:在许多静态类型的语言中都可以定义Y组合子,但是(至少在我看到的例子中)这样的定义通常需要一些不明显的类型技巧,因为Y组合子本身没有直接的静态类型。这超出了本文的范围,所以我不再进一步提及
正如Chris Ammerman所提到的:大多数过程式语言都有静态类型。
所以这个问题的答案是,不是真的。
我认为回答这个问题的最好方法是选择一种语言,比如JavaScript:
function factorial(num)
{
// If the number is less than 0, reject it.
if (num < 0) {
return -1;
}
// If the number is 0, its factorial is 1.
else if (num == 0) {
return 1;
}
// Otherwise, call this recursive procedure again.
else {
return (num * factorial(num - 1));
}
}
现在重写它,使它不使用函数内部的函数名,但仍然递归地调用它。
函数名factorial唯一应该看到的地方是在调用位置。
提示:不能使用函数名,但可以使用参数名。
解决这个问题。不要去查。一旦你解决了它,你就会明白y组合子解决了什么问题。