在Python中,如何找到整数中的位数?


当前回答

这里是最简单的方法,不需要将int转换为字符串:

假设给出的数字为15位,例如;n = 787878899999999;

n=787878899999999 
n=abs(n) // we are finding absolute value because if the number is negative int to string conversion will produce wrong output

count=0 //we have taken a counter variable which will increment itself till the last digit

while(n):
    n=n//10   /*Here we are removing the last digit of a number...it will remove until 0 digits will left...and we know that while(0) is False*/
    count+=1  /*this counter variable simply increase its value by 1 after deleting a digit from the original number
print(count)   /*when the while loop will become False because n=0, we will simply print the value of counter variable

输入:

n=787878899999999

输出:

15

其他回答

如果你想要一个整数的长度等于这个整数的位数,你总是可以把它转换成字符串,比如str(133),然后像len(str(123))一样找到它的长度。

假设您要求的是可以存储在整数中的最大数字,则该值与实现有关。我建议你在使用python时不要这样想。在任何情况下,相当大的值都可以存储在python 'integer'中。记住,Python使用鸭子类型!

编辑: 我在澄清提问者想要数字数之前给出了我的答案。就此而言,我同意公认答案所建议的方法。没什么可补充的了!

顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。

arr = []
for i in range(5000000):
    arr.append(random.randint(0,12345678901234567890))
%%timeit

for n in arr:
    len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit

for n in arr:
    int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。

我不知道之前的答案是如何证明数学方法更快的。

下面是一个体积大但速度快的版本:

def nbdigit ( x ):
    if x >= 10000000000000000 : # 17 -
        return len( str( x ))
    if x < 100000000 : # 1 - 8
        if x < 10000 : # 1 - 4
            if x < 100             : return (x >= 10)+1 
            else                   : return (x >= 1000)+3
        else: # 5 - 8                                                 
            if x < 1000000         : return (x >= 100000)+5 
            else                   : return (x >= 10000000)+7
    else: # 9 - 16 
        if x < 1000000000000 : # 9 - 12
            if x < 10000000000     : return (x >= 1000000000)+9 
            else                   : return (x >= 100000000000)+11
        else: # 13 - 16
            if x < 100000000000000 : return (x >= 10000000000000)+13 
            else                   : return (x >= 1000000000000000)+15

只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。

下面是我用来测试/测量我的函数的一组数字:

n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]

注意:它不管理负数,但适应很容易…

def count_digit(number):
  if number >= 10:
    count = 2
  else:
    count = 1
  while number//10 > 9:
    count += 1
    number = number//10
  return count