在Python中,如何找到整数中的位数?
当前回答
顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。
arr = []
for i in range(5000000):
arr.append(random.randint(0,12345678901234567890))
%%timeit
for n in arr:
len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
for n in arr:
int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。
我不知道之前的答案是如何证明数学方法更快的。
其他回答
不需要转换为字符串
import math
digits = int(math.log10(n))+1
也可以处理0和负数
import math
if n > 0:
digits = int(math.log10(n))+1
elif n == 0:
digits = 1
else:
digits = int(math.log10(-n))+2 # +1 if you don't count the '-'
你可能想把它放在一个函数中:)
以下是一些基准测试。len(str())对于非常小的数字已经落后了
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
正如亲爱的用户@Calvintwr提到的,函数数学。Log10在一个超出范围[-999999999999997,99999999999999997]的数字中有问题,我们会得到浮点数错误。我有这个问题与JavaScript(谷歌V8和NodeJS)和C (GNU GCC编译器),所以一个“纯数学”的解决方案是不可能在这里。
基于这个要点和答案,亲爱的用户@Calvintwr
import math
def get_count_digits(number: int):
"""Return number of digits in a number."""
if number == 0:
return 1
number = abs(number)
if number <= 999999999999997:
return math.floor(math.log10(number)) + 1
count = 0
while number:
count += 1
number //= 10
return count
我在长度不超过20(包括20)的数字上进行了测试,没问题。它必须足够,因为64位系统上的最大整数长度是19 (len(str(sys.maxsize)) == 19)。
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
所有使用Python 3.5测试的代码示例
def count_digit(number):
if number >= 10:
count = 2
else:
count = 1
while number//10 > 9:
count += 1
number = number//10
return count
from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1
所有的数学。Log10的解会给你带来问题。
数学。Log10速度很快,但当你的数字大于999999999999997时就会出现问题。这是因为浮点数有太多的.9,导致结果四舍五入。
因此,为了获得最佳性能,对于较小的数字使用math.log,并且只使用超出math.log处理范围的len(str()):
def getIntegerPlaces(theNumber):
if theNumber <= 999999999999997:
return int(math.log10(theNumber)) + 1
else:
return len(str(theNumber))
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 确定记录是否存在的最快方法
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if