在Python中,如何找到整数中的位数?


当前回答

from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1

其他回答

这是另一种计算任何数字的小数点前的位数的方法

from math import fabs

len(format(fabs(100),".0f"))
Out[102]: 3

len(format(fabs(1e10),".0f"))
Out[165]: 11

len(format(fabs(1235.4576),".0f"))
Out[166]: 4

我做了一个简短的基准测试,进行了10,000次循环

num     len(str(num))     ----  len(format(fabs(num),".0f")) ---- speed-up
2**1e0  2.179400e-07 sec  ----     8.577000e-07 sec          ---- 0.2541
2**1e1  2.396900e-07 sec  ----     8.668800e-07 sec          ---- 0.2765
2**1e2  9.587700e-07 sec  ----     1.330370e-06 sec          ---- 0.7207
2**1e3  2.321700e-06 sec  ----     1.761305e-05 sec          ---- 0.1318

这是一个较慢但更简单的选择。

但是即使这个解也会给出错误的99999999999998

len(format(fabs(9999999999999998),".0f"))
Out[146]: 16
len(format(fabs(9999999999999999),".0f"))
Out[145]: 17

科学记数法格式,去掉指数:

int("{:.5e}".format(1000000).split("e")[1]) + 1

我不知道速度如何,但很简单。

请注意小数点后的有效数位数(“5”在”。如果5e”将科学记数法的小数部分舍入到另一个数字,则可能会出现问题。我把它设得任意大,但可以反映出你所知道的最大数字的长度。

计算w/o将整数转换为字符串的位数:

x=123
x=abs(x)
i = 0
while x >= 10**i:
    i +=1
# i is the number of digits

如果你想要一个整数的长度等于这个整数的位数,你总是可以把它转换成字符串,比如str(133),然后像len(str(123))一样找到它的长度。

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。