我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。
library(data.table)
ans_df <- nafill(df, fill=0)
# or even faster, in-place
setnafill(df, fill=0)
其他回答
cleaner包有一个na_replace()泛型,默认情况下将数值替换为0,将逻辑替换为FALSE,将日期替换为今天,等等:
library(dplyr)
library(cleaner)
starwars %>% na_replace()
na_replace(starwars)
它甚至支持矢量化替换:
mtcars[1:6, c("mpg", "hp")] <- NA
na_replace(mtcars, mpg, hp, replacement = c(999, 123))
文档:https://msberends.github.io/cleaner/reference/na_replace.html
对于单个向量:
x <- c(1,2,NA,4,5)
x[is.na(x)] <- 0
对于data.frame,在上面的基础上创建一个函数,然后将其应用到列上。
下次请提供一个可重复的例子,具体如下:
如何制作一个优秀的R可复制示例?
如果我们试图在导出时替换NAs,例如写入csv时,那么我们可以使用:
write.csv(data, "data.csv", na = "0")
在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:
假设我们有一个带NAs的数据帧:
library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))
df
# v
# 1 1
# 2 2
# 3 3
# 4 NA
# 5 5
# 6 6
# 7 8
df %>% mutate(v = coalesce(v, 0))
# v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8
一个简单的方法是用if_na from hablar:
library(dplyr)
library(hablar)
df <- tibble(a = c(1, 2, 3, NA, 5, 6, 8))
df %>%
mutate(a = if_na(a, 0))
返回:
a
<dbl>
1 1
2 2
3 3
4 0
5 5
6 6
7 8