有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话
hasattr(myObj, '__iter__')
但我不确定这是否万无一失。
有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话
hasattr(myObj, '__iter__')
但我不确定这是否万无一失。
当前回答
Pandas有这样一个内置功能:
from pandas.util.testing import isiterable
其他回答
我最近一直在研究这个问题。基于此,我的结论是,现在这是最好的方法:
from collections.abc import Iterable # drop `.abc` with Python 2.7 or lower
def iterable(obj):
return isinstance(obj, Iterable)
上面的建议已经在前面,但普遍的共识是使用iter()会更好:
def iterable(obj):
try:
iter(obj)
except Exception:
return False
else:
return True
为了这个目的,我们在代码中也使用了iter(),但我最近开始越来越讨厌只有__getitem__被认为是可迭代的对象。在一个不可迭代对象中使用__getitem__是有正当理由的,因此上面的代码不能很好地工作。作为一个真实的例子,我们可以使用Faker。上面的代码报告它是可迭代的,但实际上试图迭代它会导致AttributeError(用Faker 4.0.2测试):
>>> from faker import Faker
>>> fake = Faker()
>>> iter(fake) # No exception, must be iterable
<iterator object at 0x7f1c71db58d0>
>>> list(fake) # Ooops
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/.../site-packages/faker/proxy.py", line 59, in __getitem__
return self._factory_map[locale.replace('-', '_')]
AttributeError: 'int' object has no attribute 'replace'
如果我们使用insinstance(),我们不会意外地认为Faker实例(或任何其他只有__getitem__的对象)是可迭代的:
>>> from collections.abc import Iterable
>>> from faker import Faker
>>> isinstance(Faker(), Iterable)
False
之前的回答评论说,使用iter()更安全,因为在Python中实现迭代的旧方法是基于__getitem__的,isinstance()方法不会检测到这一点。对于旧的Python版本,这可能是真的,但根据我非常详尽的测试,isinstance()现在工作得很好。isinstance()不起作用而iter()起作用的唯一情况是在使用Python 2时使用UserDict。如果这是相关的,可以使用isinstance(item, (Iterable, UserDict))来覆盖。
根据Python 2术语表,可迭代对象是
所有序列类型(如list、str和tuple)和一些非序列类型(如dict和file)以及使用__iter__()或__getitem__()方法定义的任何类的对象。可迭代对象可用于for循环和许多其他需要序列的地方(zip(), map(),…)。当一个可迭代对象作为参数传递给内置函数iter()时,它将返回该对象的迭代器。
当然,考虑到Python的一般编码风格,基于“请求原谅比请求许可更容易”这一事实。,一般的期望是使用
try:
for i in object_in_question:
do_something
except TypeError:
do_something_for_non_iterable
但如果你需要显式检查它,你可以通过hasattr(object_in_question, "__iter__")或hasattr(object_in_question, "__getitem__")来测试可迭代对象。你需要检查两者,因为strs没有__iter__方法(至少在Python 2中没有,在Python 3中有),而且生成器对象没有__getitem__方法。
如果object是可迭代的,下面代码中的isiterable函数将返回True。如果不是iterable则返回False
def isiterable(object_):
return hasattr(type(object_), "__iter__")
例子
fruits = ("apple", "banana", "peach")
isiterable(fruits) # returns True
num = 345
isiterable(num) # returns False
isiterable(str) # returns False because str type is type class and it's not iterable.
hello = "hello dude !"
isiterable(hello) # returns True because as you know string objects are iterable
在Python <= 2.5中,你不能也不应该——iterable是一个“非正式的”接口。
但是从Python 2.6和3.0开始,你可以利用新的ABC(抽象基类)基础设施以及一些内置的ABC,这些ABC在collections模块中可用:
from collections import Iterable
class MyObject(object):
pass
mo = MyObject()
print isinstance(mo, Iterable)
Iterable.register(MyObject)
print isinstance(mo, Iterable)
print isinstance("abc", Iterable)
现在,这是否可取,或者是否有效,只是一个惯例的问题。正如你所看到的,你可以将一个不可迭代的对象注册为Iterable——它将在运行时引发一个异常。因此,isinstance获得了一个“新的”含义——它只是检查“声明的”类型兼容性,这在Python中是一个很好的方法。
另一方面,如果你的对象不能满足你所需要的接口,你会怎么做?举个例子:
from collections import Iterable
from traceback import print_exc
def check_and_raise(x):
if not isinstance(x, Iterable):
raise TypeError, "%s is not iterable" % x
else:
for i in x:
print i
def just_iter(x):
for i in x:
print i
class NotIterable(object):
pass
if __name__ == "__main__":
try:
check_and_raise(5)
except:
print_exc()
print
try:
just_iter(5)
except:
print_exc()
print
try:
Iterable.register(NotIterable)
ni = NotIterable()
check_and_raise(ni)
except:
print_exc()
print
如果对象不满足您的期望,则抛出TypeError,但如果已经注册了正确的ABC,则检查将毫无用处。相反,如果__iter__方法可用,Python将自动识别该类的object为Iterable。
如果你只是期望一个可迭代对象,遍历它,然后忘记它。另一方面,如果您需要根据输入类型执行不同的操作,那么您可能会发现ABC基础结构非常有用。
def is_iterable(x):
try:
0 in x
except TypeError:
return False
else:
return True
这将对所有可迭代对象说“是”,但对Python 2中的字符串说“不”。(例如,当递归函数可以接受字符串或字符串容器时,这就是我想要的。在这种情况下,请求原谅可能会导致模糊代码,最好先征求允许。)
import numpy
class Yes:
def __iter__(self):
yield 1;
yield 2;
yield 3;
class No:
pass
class Nope:
def __iter__(self):
return 'nonsense'
assert is_iterable(Yes())
assert is_iterable(range(3))
assert is_iterable((1,2,3)) # tuple
assert is_iterable([1,2,3]) # list
assert is_iterable({1,2,3}) # set
assert is_iterable({1:'one', 2:'two', 3:'three'}) # dictionary
assert is_iterable(numpy.array([1,2,3]))
assert is_iterable(bytearray("not really a string", 'utf-8'))
assert not is_iterable(No())
assert not is_iterable(Nope())
assert not is_iterable("string")
assert not is_iterable(42)
assert not is_iterable(True)
assert not is_iterable(None)
这里有许多其他策略会对字符串说“是”。如果你想的话就用吧。
import collections
import numpy
assert isinstance("string", collections.Iterable)
assert isinstance("string", collections.Sequence)
assert numpy.iterable("string")
assert iter("string")
assert hasattr("string", '__getitem__')
注意:is_iterable()会对bytes和bytearray类型的字符串说yes。
Python 3中的bytes对象是可迭代的True == is_iterable(b"string") == is_iterable("string".encode('utf-8')) Python 2和3中的bytearray对象是可迭代的True == is_iterable(bytearray(b"abc"))
O.P. hasattr(x, '__iter__')方法将对Python 3中的字符串说“是”,而在Python 2中对字符串说“否”(无论“或b”或u”)。感谢@LuisMasuelli注意到它也会让你在一个bug __iter__。