有没有像isiterable这样的方法?到目前为止,我找到的唯一解决办法就是打电话

hasattr(myObj, '__iter__')

但我不确定这是否万无一失。


当前回答

在Python <= 2.5中,你不能也不应该——iterable是一个“非正式的”接口。

但是从Python 2.6和3.0开始,你可以利用新的ABC(抽象基类)基础设施以及一些内置的ABC,这些ABC在collections模块中可用:

from collections import Iterable

class MyObject(object):
    pass

mo = MyObject()
print isinstance(mo, Iterable)
Iterable.register(MyObject)
print isinstance(mo, Iterable)

print isinstance("abc", Iterable)

现在,这是否可取,或者是否有效,只是一个惯例的问题。正如你所看到的,你可以将一个不可迭代的对象注册为Iterable——它将在运行时引发一个异常。因此,isinstance获得了一个“新的”含义——它只是检查“声明的”类型兼容性,这在Python中是一个很好的方法。

另一方面,如果你的对象不能满足你所需要的接口,你会怎么做?举个例子:

from collections import Iterable
from traceback import print_exc

def check_and_raise(x):
    if not isinstance(x, Iterable):
        raise TypeError, "%s is not iterable" % x
    else:
        for i in x:
            print i

def just_iter(x):
    for i in x:
        print i


class NotIterable(object):
    pass

if __name__ == "__main__":
    try:
        check_and_raise(5)
    except:
        print_exc()
        print

    try:
        just_iter(5)
    except:
        print_exc()
        print

    try:
        Iterable.register(NotIterable)
        ni = NotIterable()
        check_and_raise(ni)
    except:
        print_exc()
        print

如果对象不满足您的期望,则抛出TypeError,但如果已经注册了正确的ABC,则检查将毫无用处。相反,如果__iter__方法可用,Python将自动识别该类的object为Iterable。

如果你只是期望一个可迭代对象,遍历它,然后忘记它。另一方面,如果您需要根据输入类型执行不同的操作,那么您可能会发现ABC基础结构非常有用。

其他回答

到目前为止,我找到的最佳解决方案是:

Hasattr(obj, '__contains__')

它主要检查对象是否实现了in操作符。

优点(其他解决方案都不具备这三个优点):

它是一个表达式(工作为lambda,而不是try…变体除外) 它(应该)由所有可迭代对象实现,包括字符串(而不是__iter__) 适用于任何Python >= 2.5

注:

Python的“请求原谅,而不是允许”的哲学在例如,在一个列表中,你有可迭代对象和不可迭代对象,你需要根据它的类型区别对待每个元素(在try上处理可迭代对象,在except上处理不可迭代对象可以工作,但它看起来很丑,会误导人)时,就不会很好地工作了。 对于这个问题的解决方案,试图实际遍历对象(例如[x for x in obj])来检查它是否为可迭代对象,可能会导致对大型可迭代对象的显著性能损失(特别是如果你只需要可迭代对象的前几个元素,例如),应该避免

不是真的“正确”,但可以作为最常见的类型,如字符串,元组,浮动等快速检查…

>>> '__iter__' in dir('sds')
True
>>> '__iter__' in dir(56)
False
>>> '__iter__' in dir([5,6,9,8])
True
>>> '__iter__' in dir({'jh':'ff'})
True
>>> '__iter__' in dir({'jh'})
True
>>> '__iter__' in dir(56.9865)
False

Duck typing

try:
    iterator = iter(the_element)
except TypeError:
    # not iterable
else:
    # iterable

# for obj in iterator:
#     pass

类型检查

使用抽象基类。它们至少需要Python 2.6,并且只适用于新样式的类。

from collections.abc import Iterable   # import directly from collections for Python < 3.3

if isinstance(the_element, Iterable):
    # iterable
else:
    # not iterable

然而,iter()更可靠一些,如文档所述:

检查isinstance(obj, Iterable)检测类 注册为Iterable或具有__iter__()方法,但是 它不会检测使用__getitem__()迭代的类 方法。唯一可靠的方法来确定一个对象是否 Is iterable调用iter(obj)。

考虑到Python的duck类型,最简单的方法是捕捉错误(Python完全知道它期望从一个对象变成迭代器):

class A(object):
    def __getitem__(self, item):
        return something

class B(object):
    def __iter__(self):
        # Return a compliant iterator. Just an example
        return iter([])

class C(object):
    def __iter__(self):
        # Return crap
        return 1

class D(object): pass

def iterable(obj):
    try:
        iter(obj)
        return True
    except:
        return False

assert iterable(A())
assert iterable(B())
assert iterable(C())
assert not iterable(D())

注:

如果异常类型相同,则区分对象是否不可迭代或已经实现了有bug的__iter__是无关紧要的:无论如何,您将无法迭代对象。 我想我理解你的担忧:如果我也可以依赖鸭类型来引发AttributeError,如果__call__没有为我的对象定义,那么callable如何作为检查存在,但这不是可迭代检查的情况? 我不知道答案,但你可以实现我(和其他用户)给出的函数,或者只是在你的代码中捕获异常(你在那部分的实现将像我写的函数一样——只要确保你将迭代器的创建与其余代码隔离开来,这样你就可以捕获异常并将其与另一个TypeError区分开来。

我在这里找到了一个很好的解决方案:

isiterable = lambda obj: isinstance(obj, basestring) \
    or getattr(obj, '__iter__', False)