我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

注意:这是python 2.7版本

您可以使用lambda函数来处理这个问题,它既适用于NumPy数组,也适用于列表。

your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]

import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]

你可以用

result[0]

获取筛选元素的第一个索引。

对于python 3.6,使用

list(result)

而不是

result

其他回答

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。

您还可以将NumPy数组转换为list in - air并获取其索引。例如,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

它会输出1。

注意:这是python 2.7版本

您可以使用lambda函数来处理这个问题,它既适用于NumPy数组,也适用于列表。

your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]

import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]

你可以用

result[0]

获取筛选元素的第一个索引。

对于python 3.6,使用

list(result)

而不是

result

找到了另一个循环解决方案:

new_array_of_indicies = []

for i in range(len(some_array)):
  if some_array[i] == some_value:
    new_array_of_indicies.append(i)
    

只是添加一个非常高性能和方便的numba替代np。Ndenumerate来查找第一个索引:

from numba import njit
import numpy as np

@njit
def index(array, item):
    for idx, val in np.ndenumerate(array):
        if val == item:
            return idx
    # If no item was found return None, other return types might be a problem due to
    # numbas type inference.

这非常快,并且自然地处理多维数组:

>>> arr1 = np.ones((100, 100, 100))
>>> arr1[2, 2, 2] = 2

>>> index(arr1, 2)
(2, 2, 2)

>>> arr2 = np.ones(20)
>>> arr2[5] = 2

>>> index(arr2, 2)
(5,)

这比任何使用np的方法都要快得多(因为它使操作短路)。Where或np. non0。


然而np。Argwhere也可以优雅地处理多维数组(你需要手动将它转换为元组,而且不会短路),但如果没有找到匹配,它就会失败:

>>> tuple(np.argwhere(arr1 == 2)[0])
(2, 2, 2)
>>> tuple(np.argwhere(arr2 == 2)[0])
(5,)