这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。

但我可以用几个技巧将质数从2加速到接近x2:

使用numexpr库将numpy表达式转换为分配较少的紧循环 取代np。有更快的选择 以某种方式操作筛选的前9个元素,因此不需要改变数组的形状

总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒

import numexpr as ne
import numpy as np

def primesfrom2to_numexpr(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
    sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
    ne.evaluate('sieve + 0x01010101', out=sieve)
    sieve = sieve.view('int8')
    #sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
    sieve[0] = 0
    for i in np.arange(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = 0
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
    sieve[[0,8]] = 1
    result = np.flatnonzero(sieve)
    ne.evaluate('result * 3 + 1 + result%2', out=result)
    result[:9] = [2,3,5,7,11,13,17,19,23]
    return result

其他回答

如果你可以控制N,列出所有质数的最快方法就是预先计算它们。认真对待。预计算是一种被忽视的优化方法。

假设N < 9,080,191, Miller-Rabin's Primality检验的确定性实现

import sys

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in range(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    if n <= 2:
        return n == 2

    if n < 2_047:
        return miller_rabin_pass(2, n)

    return all(miller_rabin_pass(a, n) for a in (31, 73))


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

根据维基百科(http://en.wikipedia.org/wiki/Miller -Rabin_primality_test)上的文章,对于a = 37和73,测试N < 9,080,191足以判断N是否为合数。

我从原始米勒-拉宾测试的概率实现中改编了源代码:https://www.literateprograms.org/miller-rabin_primality_test__python_.html

如果你不想重新发明轮子,你可以安装符号数学库symphony(是的,它与Python 3兼容)

pip install sympy

然后使用质数函数

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

在Pure Python中最快的质数筛分:

from itertools import compress

def half_sieve(n):
    """
    Returns a list of prime numbers less than `n`.
    """
    if n <= 2:
        return []
    sieve = bytearray([True]) * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
    primes = list(compress(range(1, n, 2), sieve))
    primes[0] = 2
    return primes

我优化了埃拉托色尼筛子的速度和内存。

基准

from time import clock
import platform

def benchmark(iterations, limit):
    start = clock()
    for x in range(iterations):
        half_sieve(limit)
    end = clock() - start
    print(f'{end/iterations:.4f} seconds for primes < {limit}')

if __name__ == '__main__':
    print(platform.python_version())
    print(platform.platform())
    print(platform.processor())
    it = 10
    for pw in range(4, 9):
        benchmark(it, 10**pw)

输出

>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000

第一次使用python,所以我在这里使用的一些方法可能看起来有点麻烦。我只是直接将我的c++代码转换为python,这就是我所拥有的(尽管在python中有点慢)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py 在12.799119秒内找到664579个质数!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py 在10.230172秒内找到664579个质数!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

python Primes2.py 在7.113776秒内找到664579个质数!