这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

对于足够大的N,真正最快的解决方案是下载一个预先计算的质数列表,将其存储为元组,并执行如下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果只有N >个质数[-1],则计算更多的质数并将新列表保存在代码中,以便下次同样快。

要跳出思维定势。

其他回答

使用Sundaram的Sieve,我想我打破了pure-Python的记录:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

Comparasion:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop

这些都是经过编写和测试的。所以没有必要重新发明轮子。

python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

打破了12.2秒的记录!

10 loops, best of 10: 12.2 msec per loop

如果这还不够快,你可以试试PyPy:

pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

结果是:

10 loops, best of 10: 2.03 msec per loop

得到247张赞成票的答案列出了15.9毫秒的最佳解决方案。 比较这个! !

你有一个更快的代码和最简单的代码生成质数。 但对于更大的数字,当n=10000, 10000000时,它不起作用,可能是。pop()方法失败了

考虑:N是质数吗?

case 1: You got some factors of N, for i in range(2, N): If N is prime loop is performed for ~(N-2) times. else less number of times case 2: for i in range(2, int(math.sqrt(N)): Loop is performed for almost ~(sqrt(N)-2) times if N is prime else will break somewhere case 3: Better We Divide N With Only number of primes<=sqrt(N) Where loop is performed for only π(sqrt(N)) times π(sqrt(N)) << sqrt(N) as N increases from math import sqrt from time import * prime_list = [2] n = int(input()) s = time() for n0 in range(2,n+1): for i0 in prime_list: if n0%i0==0: break elif i0>=int(sqrt(n0)): prime_list.append(n0) break e = time() print(e-s) #print(prime_list); print(f'pi({n})={len(prime_list)}') print(f'{n}: {len(prime_list)}, time: {e-s}') Output 100: 25, time: 0.00010275840759277344 1000: 168, time: 0.0008606910705566406 10000: 1229, time: 0.015588521957397461 100000: 9592, time: 0.023436546325683594 1000000: 78498, time: 4.1965954303741455 10000000: 664579, time: 109.24591708183289 100000000: 5761455, time: 2289.130858898163

小于1000似乎很慢,但小于10^6我认为更快。

然而,我无法理解时间的复杂性。

使用Numpy实现的半筛子略有不同:

http://rebrained.com/?p=458

import math
import numpy
def prime6(upto):
    primes=numpy.arange(3,upto+1,2)
    isprime=numpy.ones((upto-1)/2,dtype=bool)
    for factor in primes[:int(math.sqrt(upto))]:
        if isprime[(factor-2)/2]: isprime[(factor*3-2)/2:(upto-1)/2:factor]=0
    return numpy.insert(primes[isprime],0,2)

有人能把这个和其他时间比较一下吗?在我的机器上,它似乎与其他Numpy半筛相当。

这里有一个来自Python Cookbook的非常简洁的示例——该URL的最快版本是:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

这就给出了

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

在shell提示符(正如我喜欢做的那样)中测量这段代码在pri.py中,我观察到:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

所以看起来食谱解决方案的速度是原来的两倍多。