在Python中,给定一个项目,如何在列表中计算它的出现次数?


一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。


当前回答

import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]

#turning the list into a temporary dataframe
test  = pd.DataFrame(test)

#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts

然后可以使用dfcounts.index和dfcounts.value来获取数据。

其他回答

如果您使用的是Python 2.7或3.x,并且希望每个元素的出现次数,请使用Counter:

>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})

为什么不使用Pandas?

import pandas as pd

my_list = ['a', 'b', 'c', 'd', 'a', 'd', 'a']

# converting the list to a Series and counting the values
my_count = pd.Series(my_list).value_counts()
my_count

输出:

a    3
d    2
b    1
c    1
dtype: int64

如果您正在查找特定元素的计数,例如a,请尝试:

my_count['a']

输出:

3

给定列表X

 import numpy as np
 X = [1, -1, 1, -1, 1]

显示此列表元素的i:frequency(i)的字典为:

{i:X.count(i) for i in np.unique(X)}

输出:

{-1: 2, 1: 3}

建议使用numpy的bincount,但它只适用于具有非负整数的1d数组。此外,生成的数组可能会令人困惑(它包含原始列表中从最小值到最大值的整数,并将缺失的整数设置为0)。

使用numpy的更好方法是使用属性return_counts设置为True的唯一函数。它返回一个元组,其中包含一个唯一值数组和每个唯一值的出现数组。

# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True)  # array([0, 1, 2, 3]), array([2, 3, 1, 2]

然后我们可以将它们配对为

dict(zip(a_uniq, counts))  # {0: 2, 1: 3, 2: 1, 3: 2}

它也适用于其他数据类型和“2d列表”,例如。

>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]

#turning the list into a temporary dataframe
test  = pd.DataFrame(test)

#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts

然后可以使用dfcounts.index和dfcounts.value来获取数据。