我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

我将尝试在一个C程序中回答sin()的情况,该程序用GCC的C编译器在当前的x86处理器(假设是Intel Core 2 Duo)上编译。

在C语言中,标准C库包含了一些常见的数学函数,而这些函数并不包含在语言本身中(例如pow, sin和cos分别表示幂,sin和cos)。它们的头文件包含在math.h中。

现在在GNU/Linux系统上,这些库函数是由glibc (GNU libc或GNU C库)提供的。但是GCC编译器希望您使用-lm编译器标志链接到数学库(libm.so),以启用这些数学函数的使用。我不确定为什么它不是标准C库的一部分。这些将是浮点函数的软件版本,或“软浮动”。

题外话:将数学函数分开的原因由来已久,据我所知,可能是在共享库可用之前,它仅仅是为了在非常古老的Unix系统中减少可执行程序的大小。

Now the compiler may optimize the standard C library function sin() (provided by libm.so) to be replaced with an call to a native instruction to your CPU/FPU's built-in sin() function, which exists as an FPU instruction (FSIN for x86/x87) on newer processors like the Core 2 series (this is correct pretty much as far back as the i486DX). This would depend on optimization flags passed to the gcc compiler. If the compiler was told to write code that would execute on any i386 or newer processor, it would not make such an optimization. The -mcpu=486 flag would inform the compiler that it was safe to make such an optimization.

现在,如果程序执行sin()函数的软件版本,它将基于CORDIC(坐标旋转数字计算机)或BKM算法,或者更可能是现在通常用于计算此类超越函数的表格或幂级数计算。(Src: http://en.wikipedia.org/wiki/Cordic应用程序)

任何最新的gcc版本(大约2.9倍以来)也提供了内置的sin版本__builtin_sin(),作为优化,它将用于取代对C库版本的标准调用。

我相信这是非常清楚的,但希望给你更多的信息比你期望的,和许多出发点,以了解更多自己。

其他回答

在GNU libm中,sin的实现依赖于系统。因此,您可以在sysdeps的适当子目录中找到每个平台的实现。

一个目录包含一个由IBM贡献的C语言实现。自2011年10月以来,这是在典型的x86-64 Linux系统上调用sin()时实际运行的代码。它显然比汇编指令中的f_f快。源代码:sysdeps/ieee754/dbl-64/s_sin.c,查找__sin (double x)。

这段代码非常复杂。没有一种软件算法在整个x值范围内尽可能快且准确,因此库实现了几种不同的算法,它的第一项工作是查看x并决定使用哪种算法。

When x is very very close to 0, sin(x) == x is the right answer. A bit further out, sin(x) uses the familiar Taylor series. However, this is only accurate near 0, so... When the angle is more than about 7°, a different algorithm is used, computing Taylor-series approximations for both sin(x) and cos(x), then using values from a precomputed table to refine the approximation. When |x| > 2, none of the above algorithms would work, so the code starts by computing some value closer to 0 that can be fed to sin or cos instead. There's yet another branch to deal with x being a NaN or infinity.

这段代码使用了一些我以前从未见过的数值技巧,尽管据我所知,它们可能在浮点专家中很有名。有时几行代码需要几段文字来解释。例如,这两条线

double t = (x * hpinv + toint);
double xn = t - toint;

(有时)用于将x减小到接近0的值,该值与x相差π/2的倍数,特别是xn × π/2。这种没有划分或分支的方式相当聪明。但是没有任何评论!


旧的32位版本的GCC/glibc使用fsin指令,这对于某些输入是非常不准确的。有一篇精彩的博客文章用两行代码说明了这一点。

fdlibm在纯C中实现sin要比glibc简单得多,而且注释很好。源代码:fdlibm/s_sin.c和fdlibm/k_sin.c

没有什么比点击源代码,看看人们是如何在常用的库中实际完成它的了;让我们特别看看一个C库实现。我选择了uLibC。

这是sin函数:

http://git.uclibc.org/uClibc/tree/libm/s_sin.c

看起来它处理了一些特殊情况,然后执行一些参数约简,将输入映射到范围[-pi/4,pi/4],(将参数分成两部分,一个大的部分和一个尾巴),然后调用

http://git.uclibc.org/uClibc/tree/libm/k_sin.c

然后作用于这两个部分。 如果没有尾巴,则使用13次多项式生成近似答案。 如果有尾巴,根据sin(x+y) = sin(x) + sin'(x')y的原理,你会得到一个小的修正

OK kiddies, time for the pros.... This is one of my biggest complaints with inexperienced software engineers. They come in calculating transcendental functions from scratch (using Taylor's series) as if nobody had ever done these calculations before in their lives. Not true. This is a well defined problem and has been approached thousands of times by very clever software and hardware engineers and has a well defined solution. Basically, most of the transcendental functions use Chebyshev Polynomials to calculate them. As to which polynomials are used depends on the circumstances. First, the bible on this matter is a book called "Computer Approximations" by Hart and Cheney. In that book, you can decide if you have a hardware adder, multiplier, divider, etc, and decide which operations are fastest. e.g. If you had a really fast divider, the fastest way to calculate sine might be P1(x)/P2(x) where P1, P2 are Chebyshev polynomials. Without the fast divider, it might be just P(x), where P has much more terms than P1 or P2....so it'd be slower. So, first step is to determine your hardware and what it can do. Then you choose the appropriate combination of Chebyshev polynomials (is usually of the form cos(ax) = aP(x) for cosine for example, again where P is a Chebyshev polynomial). Then you decide what decimal precision you want. e.g. if you want 7 digits precision, you look that up in the appropriate table in the book I mentioned, and it will give you (for precision = 7.33) a number N = 4 and a polynomial number 3502. N is the order of the polynomial (so it's p4.x^4 + p3.x^3 + p2.x^2 + p1.x + p0), because N=4. Then you look up the actual value of the p4,p3,p2,p1,p0 values in the back of the book under 3502 (they'll be in floating point). Then you implement your algorithm in software in the form: (((p4.x + p3).x + p2).x + p1).x + p0 ....and this is how you'd calculate cosine to 7 decimal places on that hardware.

请注意,在FPU中大多数硬件实现的超越操作通常涉及一些微码和类似的操作(取决于硬件)。 切比雪夫多项式用于大多数先验多项式,但不是全部。例:使用Newton raphson方法的两次迭代,首先使用查询表,使用平方根更快。 同样,《计算机逼近》这本书会告诉你。

If you plan on implmementing these functions, I'd recommend to anyone that they get a copy of that book. It really is the bible for these kinds of algorithms. Note that there are bunches of alternative means for calculating these values like cordics, etc, but these tend to be best for specific algorithms where you only need low precision. To guarantee the precision every time, the chebyshev polynomials are the way to go. Like I said, well defined problem. Has been solved for 50 years now.....and thats how it's done.

Now, that being said, there are techniques whereby the Chebyshev polynomials can be used to get a single precision result with a low degree polynomial (like the example for cosine above). Then, there are other techniques to interpolate between values to increase the accuracy without having to go to a much larger polynomial, such as "Gal's Accurate Tables Method". This latter technique is what the post referring to the ACM literature is referring to. But ultimately, the Chebyshev Polynomials are what are used to get 90% of the way there.

享受。

无论何时这样一个函数被求值,那么在某种程度上很可能有:

内插的值表(用于快速,不准确的应用程序-例如计算机图形) 收敛于期望值的级数的计算——可能不是泰勒级数,更可能是基于像克伦肖-柯蒂斯这样的奇异正交。

如果没有硬件支持,那么编译器可能会使用后一种方法,只发出汇编代码(没有调试符号),而不是使用c库——这让您在调试器中跟踪实际代码变得很棘手。

如果你想犯罪

 __asm__ __volatile__("fsin" : "=t"(vsin) : "0"(xrads));

如果你想的话,因为

 __asm__ __volatile__("fcos" : "=t"(vcos) : "0"(xrads));

如果你想要根号方根

 __asm__ __volatile__("fsqrt" : "=t"(vsqrt) : "0"(value));

那么,既然机器指令可以做到,为什么还要使用不准确的代码呢?