我一直是一个简单使用的人:

List<String> names = new ArrayList<>();

我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。

LinkedList何时应用于ArrayList,反之亦然?


当前回答

与LinkedList相比,Summary ArrayList和ArrayDeque在更多的用例中更可取。如果您不确定,请从ArrayList开始。


TLDR,在ArrayList中,访问元素需要恒定的时间[O(1)],添加元素需要O(n)时间[最坏情况]。在LinkedList中,插入元素需要O(n)时间,访问也需要O(n)时间,但LinkedList比ArrayList使用更多内存。

LinkedList和ArrayList是List接口的两种不同实现。LinkedList使用双链接列表实现它。ArrayList通过动态调整数组大小来实现它。

与标准的链表和数组操作一样,不同的方法将有不同的算法运行时。

对于LinkedList<E>

get(int index)为O(n)(平均步数为n/4),但当index=0或index=list.size()-1时为O(1)(在这种情况下,还可以使用getFirst()和getLast())。LinkedList的主要优点之一add(int index,E元素)为O(n)(平均步数为n/4),但当index=0或index=list.size()-1时为O(1)(在这种情况下,还可以使用addFirst()和addLast()/add())。LinkedList的主要优点之一remove(int index)为O(n)(平均步数为n/4),但当index=0或index=list.size()-1时为O(1)(在这种情况下,还可以使用removeFirst()和removeLast())。LinkedList的主要优点之一Iterator.remove()为O(1)。LinkedList的主要优点之一ListIterator.add(E元素)为O(1)。LinkedList的主要优点之一

注:许多操作平均需要n/4步,在最佳情况下(例如索引=0)需要恒定的步数,在最坏情况下(列表中间)需要n/2步

对于ArrayList<E>

get(int索引)为O(1)。ArrayList的主要优势<E>add(E元素)是O(1)摊销,但O(n)最坏情况,因为数组必须调整大小并复制add(int索引,E元素)为O(n)(平均n/2步)remove(int索引)为O(n)(平均n/2步)Iterator.remove()为O(n)(平均为n/2步)ListIterator.add(E元素)为O(n)(平均n/2步)

注:许多操作平均需要n/2步,在最佳情况下(列表末尾)需要恒定的步数,在最坏情况下(开始列表)需要n步

LinkedList<E>允许使用迭代器进行恒定时间的插入或删除,但只能对元素进行顺序访问。换句话说,您可以向前或向后遍历列表,但在列表中找到位置所需的时间与列表的大小成正比。Javadoc表示“索引到列表中的操作将从开始或结束遍历列表,以较近者为准”,因此这些方法平均为O(n)(n/4步),尽管索引=0时为O(1)。

另一方面,ArrayList<E>允许快速随机读取访问,因此您可以在恒定时间内获取任何元素。但是,除了末端之外,任何地方的添加或删除都需要将后面的所有元素转换过来,要么打开,要么填补空白。此外,如果添加的元素超过了基础数组的容量,则会分配一个新数组(大小的1.5倍),并将旧数组复制到新数组,因此在最坏的情况下,添加到ArrayList是O(n),但平均来说是常量。

因此,根据您打算执行的操作,您应该相应地选择实现。对这两种列表进行迭代实际上都是同样便宜的。(在ArrayList上迭代在技术上更快,但除非您正在做一些对性能非常敏感的事情,否则不必担心这一点——它们都是常量。)

使用LinkedList的主要好处是重用现有迭代器来插入和删除元素。然后,这些操作可以在O(1)中通过仅本地更改列表来完成。在阵列列表中,需要移动(即复制)阵列的其余部分。另一方面,在LinkedList中查找意味着在最坏情况下遵循O(n)(n/2步)中的链接,而在ArrayList中,所需位置可以通过数学计算并在O(1)中访问。

使用LinkedList的另一个好处是在列表的开头添加或删除,因为这些操作是O(1),而ArrayList是O(n)。请注意,ArrayDeque可能是LinkedList的一个很好的替代方案,用于添加和删除头部,但它不是List。

此外,如果您有大量列表,请记住内存使用情况也不同。LinkedList的每个元素都有更多的开销,因为指向下一个和上一个元素的指针也会被存储。ArrayList没有这个开销。然而,ArrayList占用的内存与为容量分配的内存一样多,而不管是否实际添加了元素。

ArrayList的默认初始容量非常小(Java 1.4-1.8中为10)。但由于底层实现是一个数组,如果添加大量元素,则必须调整数组的大小。为了避免在知道要添加大量元素时调整大小的高昂成本,请使用更高的初始容量构建ArrayList。

如果使用数据结构透视图来理解这两个结构,LinkedList基本上是一个包含头节点的顺序数据结构。Node是两个组件的包装器:一个类型为T的值[通过泛型接受],另一个对链接到它的Node的引用。因此,我们可以断言它是一个递归数据结构(一个Node包含另一个节点,该节点具有另一个Node等等…)。如上所述,在LinkedList中添加元素需要线性时间。

ArrayList是一个可增长的数组。它就像一个常规数组。在后台,当添加了一个元素,并且ArrayList已经满了容量时,它将创建另一个大小大于先前大小的数组。然后将元素从先前的数组复制到新的数组,并且将要添加的元素也放置在指定的索引处。

其他回答

这是一个效率问题。LinkedList添加和删除元素很快,但访问特定元素很慢。ArrayList访问特定元素的速度很快,但添加到两端的速度可能很慢,尤其是删除在中间的速度慢。

Array vs ArrayList vs LinkedList vs Vector更深入,同样如此链接列表。

到目前为止,除了人们普遍认为LinkedList比ArrayList“多得多”之外,似乎没有人解决这些列表中每一个的内存占用问题,所以我做了一些数字处理,以证明这两个列表对于N个空引用所占的空间。

由于引用在其相对系统上是32位或64位(即使为空),因此我为32位和64位LinkedList和ArrayList包含了4组数据。

注意:ArrayList行显示的大小是用于修剪列表的-实际上,ArrayList中的后备数组的容量通常大于其当前元素计数。

注2:(感谢BeeOnRope)由于压缩Oops现在是默认值,从JDK6中期开始,以下64位机器的值将基本上与32位机器的对应值相匹配,当然,除非您特意关闭它。



结果清楚地表明,LinkedList比ArrayList多得多,尤其是元素数非常高的情况。如果内存是一个因素,请避开LinkedList。

我使用的公式如下,如果我做错了什么,请告诉我,我会改正的对于32位或64位系统,b’是4或8,而n’是元素的数量。注意mods的原因是因为java中的所有对象都将占用8字节的倍数空间,而不管是否全部使用。

阵列列表:

ArrayList对象头+大小整数+modCount整数+数组引用+(数组项目头+b*n)+MOD

链接列表:

LinkedList对象标头+大小整数+modCount整数+对标头的引用+对页脚的引用+(节点对象开销+对上一元素的引用+下一元素的参考+对元素的引用)*n)+MOD(节点对象,8)*n+MOD, 8)

除了上面的其他好参数之外,您应该注意到ArrayList实现了RandomAccess接口,而LinkedList实现了Queue。

因此,他们解决的问题略有不同,效率和行为有所不同(见他们的方法列表)。

以下是ArrayList和LinkedList以及CopyOnWrite ArrayList中的Big-O符号:

阵列列表

get                 O(1)
add                 O(1)
contains            O(n)
next                O(1)
remove              O(n)
iterator.remove     O(n)

链表

get                 O(n)
add                 O(1)
contains            O(n)
next                O(1)
remove              O(1)
iterator.remove     O(1)

CopyOnWrite阵列列表

get                 O(1)
add                 O(n)
contains            O(n)
next                O(1)
remove              O(n)
iterator.remove     O(n)

基于这些,您必须决定选择什么。:)

TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。


理论上,LinkedList的add(E元素)有一个O(1)

此外,在列表中间添加元素应该非常有效。

实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。

以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):

使用新一代硬件(更大、更高效的缓存),结果更为确凿:

LinkedList需要更多的时间来完成相同的任务。源源代码

这主要有两个原因:

主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。

顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。

需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:

Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference                           0.5 ns
Branch mispredict                            5   ns
L2 cache reference                           7   ns                      14x L1 cache
Mutex lock/unlock                           25   ns
Main memory reference                      100   ns                      20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy             3,000   ns        3 us
Send 1K bytes over 1 Gbps network       10,000   ns       10 us
Read 4K randomly from SSD*             150,000   ns      150 us          ~1GB/sec SSD
Read 1 MB sequentially from memory     250,000   ns      250 us
Round trip within same datacenter      500,000   ns      500 us
Read 1 MB sequentially from SSD*     1,000,000   ns    1,000 us    1 ms  ~1GB/sec SSD, 4X memory
Disk seek                           10,000,000   ns   10,000 us   10 ms  20x datacenter roundtrip
Read 1 MB sequentially from disk    20,000,000   ns   20,000 us   20 ms  80x memory, 20X SSD
Send packet CA->Netherlands->CA    150,000,000   ns  150,000 us  150 ms

来源:每个程序员都应该知道的延迟数

为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:

注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码

复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效


致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据