我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?
当前回答
记忆实际上是指根据方法输入记住(“记忆”→“备忘录”→被记住)方法调用的结果,然后返回记住的结果,而不是重新计算结果。您可以把它看作是方法结果的缓存。更多详细信息,请参阅第387页的算法介绍(3e), Cormen等人的定义。
在Python中使用内存计算阶乘的简单示例如下:
factorial_memo = {}
def factorial(k):
if k < 2: return 1
if k not in factorial_memo:
factorial_memo[k] = k * factorial(k-1)
return factorial_memo[k]
你可以做得更复杂一些,把记忆过程封装到一个类中:
class Memoize:
def __init__(self, f):
self.f = f
self.memo = {}
def __call__(self, *args):
if not args in self.memo:
self.memo[args] = self.f(*args)
#Warning: You may wish to do a deepcopy here if returning objects
return self.memo[args]
然后:
def factorial(k):
if k < 2: return 1
return k * factorial(k - 1)
factorial = Memoize(factorial)
Python 2.4中添加了一个被称为“装饰器”的特性,它允许你现在简单地编写以下代码来完成同样的事情:
@Memoize
def factorial(k):
if k < 2: return 1
return k * factorial(k - 1)
Python装饰器库有一个类似的装饰器,称为memoized,它比这里显示的Memoize类稍微健壮一些。
其他回答
记忆是保留昂贵的计算结果并返回缓存的结果,而不是不断地重新计算它。
这里有一个例子:
def doSomeExpensiveCalculation(self, input):
if input not in self.cache:
<do expensive calculation>
self.cache[input] = result
return self.cache[input]
更完整的描述可以在维基百科关于记忆的条目中找到。
不要忘记内置的hasattr函数,对于那些想要手工制作的人来说。这样就可以将mem缓存保存在函数定义中(而不是全局缓存)。
def fact(n):
if not hasattr(fact, 'mem'):
fact.mem = {1: 1}
if not n in fact.mem:
fact.mem[n] = n * fact(n - 1)
return fact.mem[n]
cache = {}
def fib(n):
if n <= 1:
return n
else:
if n not in cache:
cache[n] = fib(n-1) + fib(n-2)
return cache[n]
如果要考虑速度:
@functools。cache和@functools.lru_cache(maxsize=None)同样快,在我的系统上循环一百万次需要0.122秒(最好运行15次) 全局缓存变量要慢得多,在我的系统上循环一百万次需要0.180秒(最好运行15次) 一个自我。缓存类变量仍然有点慢,在我的系统上循环一百万次需要0.214秒(最好运行15次)
后两者的实现方式与目前投票最多的答案中描述的类似。
这没有防止内存耗尽,也就是说,我没有在类或全局方法中添加代码来限制缓存的大小,这真的是最基本的实现。如果需要的话,lru_cache方法可以免费提供。
对我来说,一个悬而未决的问题是如何对具有functools装饰器的东西进行单元测试。是否有可能以某种方式清空缓存?单元测试似乎使用class方法(在这里您可以为每个测试实例化一个新类)或全局变量方法(因为您可以使用您的rimportedmodule)是最干净的。Cachevariable ={}来清空它)。
只是想对已经提供的答案进行补充,Python装饰器库有一些简单但有用的实现,也可以记住“不可哈希类型”,不像functools.lru_cache。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录