Python 中产出关键字的用法是什么? 它能做什么?
例如,我试图理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。
下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。
我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:
我打电话给你并告诉你,我想要一个以特定方式计算的数字序列,我告诉你算法是什么。 这个步骤对应着定义发电机的函数, 也就是包含一个产出的函数。 稍后我告诉你, “ 好, 准备好告诉我数字的序列 ” 。 这个步骤对应着调用发电机的函数, 返回一个发电机对象。 注意不要告诉我任何数字; 你只是拿起你的纸张和铅笔。 我问你, “ 请告诉我下一个数字 ” , 然后你告诉我第一个数字; 之后, 你等着我问你下一个数字。 这是你的任务, 也就是确定你所在的位置, 你已经说过的数字, 下一个数字是什么。 我不在乎细节。 这个步骤相当于在发电机对象上调用下一个( 发电机) 号码的方法。 ( Python 2, next) 注意, 这是一个发电机对象的方法; 在 Python 3, 它被命名为...
这是生成器所做的( 包含一个产值的函数 ) ; 它开始在第一个( ) 上执行, 当它做一个产值时暂停, 当要求下一个( ) 值时, 它会从最后一点继续 。 它的设计完全符合 Python 的循环协议, 协议描述如何按顺序要求值 。
迭代协议最著名的用户是 Python 的命令用户。 所以, 当你做 :
for item in sequence:
序列是否是一个列表、字符串、字典或上述生成对象并不重要;结果是一样的:您逐个阅读序列中的项目。
请注意,定义含有产出关键字的函数不是创建生成器的唯一方法;它只是创建生成器的最简单的方法。
欲知更准确的信息,请阅读Python文件中的迭代机类型、产量说明和发电机。
简单使用实例 :
>>> def foo():
yield 100
yield 20
yield 3
>>> for i in foo(): print(i)
100
20
3
>>>
如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。
在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。
在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。
佩顿有什么差错?
Python 中的 Yield 关键字类似于用于返回 Python 中的值或对象的返回语句。 但是, 存在微小的差别。 收益语句返回一个生成符, 而不是简单地返回一个值, 而返回一个函数的生成符。
在程序内,当您调用一个函数,该函数有一个输出语句时,一旦遇到一个输出,函数的执行即停止,然后将生成器的一个对象返回到函数调用器。用更简单的文字,产出关键字将把一个与该关键字一起指定的表达式转换为生成器对象,然后返回到调用器。因此,如果您想要获得在生成器对象内存储的值,则需要将该关键字复制到该对象上。
它不会破坏本地变量的状态。 当调用函数时, 执行将从最后一个输出表达式开始。 请注意, 包含输出关键字的函数被称为生成函数 。
当您使用含有返回值的函数时,每次调用函数时,该函数从一组新的变量开始。反之,如果使用一个生成函数而不是正常函数,则执行将从它左最后的位置开始。
如果您想要从函数中返回多个值, 您可以使用输出关键字来使用生成函数。 输出表达式返回多个值。 它们返回一个值, 然后等待, 保存本地状态, 然后再恢复 。
资料来源:https://www.simplilearn.com/tutorics/python-tutoric/yield-in-python。
收益率与返回率相似。区别是:
函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。
def isprime(n):
if n == 1:
return False
for x in range(2, n):
if n % x == 0:
return False
else:
return True
def primes(n = 1):
while(True):
if isprime(n): yield n
n += 1
for n in primes():
if n > 100: break
print(n)
在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续
n += 1
在 Python 生成器( 一种特殊的迭代器) 中, 生成一系列的值, 产出关键字与 发电机功能的返回关键字相似 。
另一个令人着迷的是 生成关键词的方法 是保存生成功能的状态。
因此,我们可以设定一个数字 以不同的数值 每一次发电机产生时。
以下是一个例子:
def getPrimes(number):
while True:
if isPrime(number):
number = yield number # a miracle occurs here
number += 1
def printSuccessivePrimes(iterations, base=10):
primeGenerator = getPrimes(base)
primeGenerator.send(None)
for power in range(iterations):
print(primeGenerator.send(base ** power))