Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

在 Python 生成器( 一种特殊的迭代器) 中, 生成一系列的值, 产出关键字与 发电机功能的返回关键字相似 。

另一个令人着迷的是 生成关键词的方法 是保存生成功能的状态。

因此,我们可以设定一个数字 以不同的数值 每一次发电机产生时。

以下是一个例子:

def getPrimes(number):
    while True:
        if isPrime(number):
            number = yield number     # a miracle occurs here
        number += 1

def printSuccessivePrimes(iterations, base=10):
    primeGenerator = getPrimes(base)
    primeGenerator.send(None)
    for power in range(iterations):
        print(primeGenerator.send(base ** power))

其他回答

收益率与返回率相似。区别是:

函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续

n += 1  

收益率和返回一样, 它会返回任何您告诉它的东西( 作为生成器 ) 。 区别在于下次您调用生成器时, 执行从最后一次调用开始到收益语句 。 与返回不同的是, 当收益发生时, 堆叠框架不会被清理, 但是控制会被转回调回调用方, 因此下次调用函数时, 它的状态将会恢复 。

在您的代码中,函数获取_child_camedates 的动作就像一个迭代器,这样当您扩展列表时,它会一次在新列表中添加一个元素 。

列表。extendend calls a plerator until it's fulled it's explator until. 如果是您所贴的代码样本, 只需将图普还给列表, 并附加到列表中, 就会更加清楚 。

还有一件事情要提: 产量的函数其实不一定要终止。我写了这样的代码:

def fib():
    last, cur = 0, 1
    while True: 
        yield cur
        last, cur = cur, last + cur

这样我就可以用在别的代码里了

for f in fib():
    if some_condition: break
    coolfuncs(f);

它确实有助于简化一些问题,使一些事情更容易处理。

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的那样,利用产量产生一个发电机。

您可以使用产出关键字将数据发送回“实时”生成器。

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用发件人内部发送方法将数据发送回发件人。要允许,使用 a (ield) 。

产量的另一种用途和含义(自Python3.3以来):

yield from <expr>

PEP380 -- -- 属于子发电机的语法:

提议对发电机使用语法将部分操作权下放给另一个发电机。 这样可以将含有“ ield” 的代码部分输入到另一个发电机中。 此外, 允许次发电机返回一个值, 并将价值提供给授权发电机。 新的语法也为当一台发电机再生价值时实现优化开辟了某些机会 。

此外,这将引入(自Python3.5以来):

async def new_coroutine(data):
   ...
   await blocking_action()

以避免与正常发电机混为一谈(两者均使用每天的产量)。