何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

缩略yield关键字缩写为两个简单的事实:

  1. 如果汇编者检测到yield关键字任何地方函数内部的函数,该函数不再通过return语句。取代, 它, 它立即立即返回返回 a“等待列表”对象调用发电机
  2. 发电机是易用的,什么是易 易 易 性它的任何东西 像一个listsetrange或 dict-view, 带有按一定顺序视察每个要素的内建程序规程.

概括地说:最常见的情况是,a 发电机是一个懒惰、递增的待用清单。, 和yield语句允许您使用函数符号来编程列表值发电机应该逐渐吐出来此外,先进用途使你能够使用发电机作为共同路线(见下文)。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上,当yield语句被遇到,函数暂停并保存状态,然后根据 python 传动协议发布“ 列表中下一个返回值” 。next()并捕获aStopIteration您可能遇到过发电机,例如:发电机表达式; 发电机功能更强大,因为您可以将参数反馈到暂停的发电机功能中,用它们来实施共同路线。稍后更多。


基本示例(“清单”)

让我们定义一个函数makeRange和皮松的一模一样range调用makeRange(n)将一个天才:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要迫使发电机立即返回其待处理值, 您可以将它传送到list()(就像你可以 任何可重复的):

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

为了对发电机有更好的感觉,你可以和发电机一起玩itertools模块 (必须使用)chain.from_iterable而不是chain例如,你甚至可能使用发电机来实施无穷无尽的懒惰清单,例如:itertools.count()您可以执行您自己的def enumerate(iterable): zip(count(), iterable),或者与yield时段循环中的关键字 。

请注意:发电机实际上可以用于更多的其他物品,例如:实施共同方案或非确定性编程或其他优雅的东西。 然而, 我在此展示的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 是如何工作的。 也就是说, 当您在list(makeRange(5))。这就是我刚才所说的“懒惰、递增清单”。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内置函数next()只需调用物体.__next__()函数,该函数是“终止协议”的一部分,并在所有迭代器中查找。您可以手动使用next()函数( 以及迭代协议的其他部分) 来实施花哨, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

锥体例如:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

共同常规(通常通过下列途径接受输入的发电机)yielde.g.nextInput = yield nextOutput,作为双向通信的一种形式)基本上是一种计算方法,它允许暂停自己并请求输入(例如,它下一步应该做什么)。当共程本身暂停时(当运行中的共程最终击中yield键,计算被暂停,控制被倒回“调用”功能(要求next暂停的生成器/ coutine 仍然暂停, 直到另一个引用函数( 可能是一个不同的函数/ 变量) 要求下一个值来取消它( 通常通过输入数据将暂停的逻辑内含引导到 coroutine 代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在Python-speak语中,易 易 易 性中“理解“循环”概念的任意对象,如列表[1,2,3],和一个振动器是请求循环( 类似) 的具体实例[1,2,3].__iter__()A. A. A.发电机发电机与任何迭代器完全相同,但文字写法除外(用函数语法)。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

...然后记住发电机是振动器;即,这是一次性使用。如果您想要重新使用它,您应该拨打myRange(...)如果您需要两次使用结果,将结果转换为列表并将其存储在变量中x = list(myRange(5))。那些绝对需要克隆生成器的人(例如,正在做可怕的黑化元方案化的人)可以使用itertools.tee (Python 3仍然在工作(如果绝对必要,自Python PEP 标准提案推迟审议。

其他回答

我不太熟悉Python, 但我相信它和Python一样C# 的迭代器区块如果你熟悉这些。

关键的想法是,编译者/解释者/ 不论做什么诡计, 就打电话者而言, 他们可以继续拨打下一个 () , 它会继续返回数值 :仿佛发电机方法被暂停。现在显然你无法真正“暂停”一种方法,因此编译器可以建立一个状态机器,以便你记住你目前的位置和本地变量等的外观。这比自己写一个转动器容易得多。

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

yield简直就像return区别在于,下次你打电话给发电机时,从最后一次呼叫开始执行。yield与返回不同的语句,当生成时, 堆叠框架不会被清理, 但是控件会被转回调用方, 所以下次调用函数时, 它的状态将会恢复 。

对于您的代码,函数get_child_candidates动作就像一个循环器,这样当您扩展列表时,它会一次向新列表添加一个元素。

list.extend在你公布的代码样本中, 只需将图普还给列表, 并附加到列表中, 就会更加清晰 。

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是皮松开发商,但看似我yield持有程序流程的位置, 下一个循环从“ ield” 位置开始 。 它似乎正在等待这个位置, 就在那个位置之前, 返回一个外部值, 下次继续工作 。

这似乎是一个有趣和好的能力:

yield:

  • 可以通过停止函数从函数返回一个值多次。
  • 可使用from和它一样yield from.
  • 用于返回大数据时,将其分为小部分数据,以防止大量使用内存。

例如,test()可在以下返回'One', 'Two'['Three', 'Four']以一一一一一一一一一一一一一停止test()so so, so, so, so, so, so, so, so, so,test()停止返回共3倍test()总共3次:

def test():
    yield 'One'                  # Stop, return 'One' and resume 
    yield 'Two'                  # Stop, return 'Two' and resume
    yield from ['Three', 'Four'] # Stop and return ['Three', 'Four'] 

下面这三套代码可以调用test()打印和打印'One', 'Two', 'Three''Four':

for x in test():
    print(x)
x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
x = test()
print(x.__next__())
print(x.__next__())
print(x.__next__())
print(x.__next__())

其结果是:

$ python yield_test.py
One
Two
Three
Four

此外,在使用returnyield,没有办法从return:

def test():
    yield 'One' 
    yield 'Two'
    yield from ['Three', 'Four']
    return 'Five' # 'Five' cannot be got

x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
print(next(x)) # Here

因此,在试图获取'Five':

$ python yield_test.py 
One
Two
Three
Four
Traceback (most recent call last):
  File "C:\Users\kai\yield_test.py", line 12, in <module>
    print(next(x))
          ^^^^^^^
StopIteration: Five