何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

这里所有的答案都是伟大的,但其中只有一个答案(最受投票支持的答案)是真实的。您的代码如何工作其他涉及发电机发电机一般而言,以及它们如何运作。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在Tree对象,该对象执行__iter__以此:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

缩略while candidates语句可以替换为for element in tree; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为Node.__iter__代码里面执行时按迭代执行。 所以执行时会是这样的 :

  1. 根元素是第一个; 检查它是否留下了子子和for切换它们( 我们称它为1, 因为它的第一个迭代对象) 。
  2. 它有一个孩子,所以for执行。for child in self.left创建 a 创建新建新迭代器调自self.left,它是一个节点对象本身(it2)
  3. 和2的逻辑相同 和新的逻辑iterator创建(it3)
  4. 现在我们到达树的左边it3他们没有儿女,所以它是继续的,yield self.value
  5. 下通电话next(it3)它产生StopIteration并且存在,因为它没有子女的权利(直到功能结束,没有任何成果)
  6. it1it2仍在活动----他们没有用尽,也没有召唤。next(it2)将产生价值,而不是提高StopIteration
  7. 现在我们又回到it2和调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调-next(it2)直至它停止时:紧接着yield child语句。由于它不再留下孩子,所以它继续并产生它self.val.

这里的下场是 每一次迭代创建子编辑器以绕过树, 并保持当前迭代器的状态。 一旦它到达尾端, 它就会绕过堆叠, 并按正确的顺序返回值( 最低的收益率先返回 ) 。

您的代码示例在不同的技术中 做了类似的事情: 它包含一个单元素列表每个子子对每个子子子, 然后在下一个迭代中, 它弹出它, 运行当前对象的函数代码( 因此)self).

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。

其他回答

虽然很多答案 表明你为什么会使用yield要创建生成器, 有更多的用途yield来传递两个代码区块之间的信息。我不会重复任何已经提供的关于使用yield创建生成器。

帮助理解什么是yield在以下代码中,您可以使用手指通过任何具有yield。 每次你的手指碰到yield你必须等待next或 a/send要输入。当next被调用,你通过代码追踪 直到你击中yield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .yield被评价并返回到打电话者... 然后你等待。next被再次调用,您通过代码执行另一个循环。 但是,你会注意到,在一条共同的常规中,yield也可以与 a 一起使用send... 将会从调用器中发送一个值产生函数。如果send给给, 然后给yield接收发送的值,然后吐出左边的左手侧... 然后通过代码的追踪进展,直到你击中yield再次返回(在结尾处返回值,如同next也有人打电话))

例如:

>>> def coroutine():
...     i = -1
...     while True:
...         i += 1
...         val = (yield i)
...         print("Received %s" % val)
...
>>> sequence = coroutine()
>>> sequence.next()
0
>>> sequence.next()
Received None
1
>>> sequence.send('hello')
Received hello
2
>>> sequence.close()

许多人使用return而不是yield,但在某些情况下yield能够更有效和更方便地开展工作。

以下是一个例子:yield绝对是最好的:

返回返回(在职能)

import random

def return_dates():
    dates = [] # With 'return' you need to create a list then return it
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        dates.append(date)
    return dates

收益率(在职能)

def yield_dates():
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        yield date # 'yield' makes a generator automatically which works
                   # in a similar way. This is much more efficient.

呼叫功能

dates_list = return_dates()
print(dates_list)
for i in dates_list:
    print(i)

dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
    print(i)

两种功能都做相同的事情,但yield使用三行而不是五行, 并有一个更少的变量需要担心 。

这是代码的结果:

Output

正如你可以看到两个函数都做相同的事情。唯一的区别是return_dates()给出列表并yield_dates()给发电机。

真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

佩顿有什么差错?

Python 中的 Yield 关键字类似于用于返回 Python 中的值或对象的返回语句。 但是, 存在微小的差别。 收益语句返回一个生成符, 而不是简单地返回一个值, 而返回一个函数的生成符。

在程序内,当您调用一个函数,该函数有一个输出语句时,一旦遇到一个输出,函数的执行即停止,然后将生成器的一个对象返回到函数调用器。用更简单的文字,产出关键字将把一个与该关键字一起指定的表达式转换为生成器对象,然后返回到调用器。因此,如果您想要获得在生成器对象内存储的值,则需要将该关键字复制到该对象上。

它不会破坏本地变量的状态。 当调用函数时, 执行将从最后一个输出表达式开始。 请注意, 包含输出关键字的函数被称为生成函数 。

当您使用含有返回值的函数时,每次调用函数时,该函数从一组新的变量开始。反之,如果使用一个生成函数而不是正常函数,则执行将从它左最后的位置开始。

如果您想要从函数中返回多个值, 您可以使用输出关键字来使用生成函数。 输出表达式返回多个值。 它们返回一个值, 然后等待, 保存本地状态, 然后再恢复 。

资料来源:https://www.simplilearn.com/tutorials/python-tutorial/yield-in-python

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。