何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

要理解发电机的产量功能,人们必须理解发电机是什么。 此外,在理解发电机之前,你必须理解易可动的。可操作性:对于创建列表,您自然需要能够逐项阅读每个元素。逐项阅读其项目的过程称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

其他回答

想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。

Python 生成器与这个概念没有什么不同。 想象一下, 您有一个函数叫做 Python 。barcode_generator以生成框中独有的序列号。 显然,您可以通过函数返回大量这样的条形码,但受硬件(RAM)的限制。 更明智和空间效率更高的选项是按需生成这些序列号。

机器代码 :

def barcode_generator():
    serial_number = 10000  # Initial barcode
    while True:
        yield serial_number
        serial_number += 1


barcode = barcode_generator()
while True:
    number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
    barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
    print(barcodes)

    # function_to_create_the_next_batch_of_lightbulbs(barcodes)

    produce_more = input("Produce more? [Y/n]: ")
    if produce_more == "n":
        break

注注:next(barcode)位数。

如你所可以看到,我们有一个自成一体的“功能” 每次生成下一个独特的序列号。此函数返回发电机发电机正如你可以看到的,我们不是每次需要新序列号时都调用这个功能,而是在使用新序列号。next()给发电机提供下一个序列号。

低拉隔热器

更确切地说,这个发电机是懒惰的滚动器迭代器是一个能帮助我们穿越物体序列的物体。 它被称为懒惰因为它在需要之前不会在内存中装入序列的全部项目。next在上一个示例中,直 直 直从迭代器获取下一个项目。内含循环方式正在使用 :

for barcode in barcode_generator():
    print(barcode)

这将无穷尽地打印条形码, 但你不会失去内存 。

换句话说,发电机看起来像a 函数但行为举止如迭代器。

现实世界应用?

最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常有用 。 想象一下读取巨大从含有数十亿记录的磁盘文件中取出文件。 在您能够处理其内容之前, 在内存中读取整个文件, 可能会不可行( 也就是说, 您会用完内存 ) 。

yield:

  • 可以通过停止函数从函数返回一个值多次。
  • 可使用from和它一样yield from.
  • 用于返回大数据时,将其分为小部分数据,以防止大量使用内存。

例如,test()可在以下返回'One', 'Two'['Three', 'Four']以一一一一一一一一一一一一一停止test()so so, so, so, so, so, so, so, so, so,test()停止返回共3倍test()总共3次:

def test():
    yield 'One'                  # Stop, return 'One' and resume 
    yield 'Two'                  # Stop, return 'Two' and resume
    yield from ['Three', 'Four'] # Stop and return ['Three', 'Four'] 

下面这三套代码可以调用test()打印和打印'One', 'Two', 'Three''Four':

for x in test():
    print(x)
x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
x = test()
print(x.__next__())
print(x.__next__())
print(x.__next__())
print(x.__next__())

其结果是:

$ python yield_test.py
One
Two
Three
Four

此外,在使用returnyield,没有办法从return:

def test():
    yield 'One' 
    yield 'Two'
    yield from ['Three', 'Four']
    return 'Five' # 'Five' cannot be got

x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
print(next(x)) # Here

因此,在试图获取'Five':

$ python yield_test.py 
One
Two
Three
Four
Traceback (most recent call last):
  File "C:\Users\kai\yield_test.py", line 12, in <module>
    print(next(x))
          ^^^^^^^
StopIteration: Five

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体代替发电机(因为封闭和对象等等同)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)

yield用于创建generator。如果将生成器视为一个迭代器,每个迭代都会给您带来价值。当您在循环中使用收益率时,会得到一个生成对象,您可以用该对象从循环中以迭接方式从循环中获取项目

这里所有的答案都是伟大的,但其中只有一个答案(最受投票支持的答案)是真实的。您的代码如何工作其他涉及发电机发电机一般而言,以及它们如何运作。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在Tree对象,该对象执行__iter__以此:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

缩略while candidates语句可以替换为for element in tree; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为Node.__iter__代码里面执行时按迭代执行。 所以执行时会是这样的 :

  1. 根元素是第一个; 检查它是否留下了子子和for切换它们( 我们称它为1, 因为它的第一个迭代对象) 。
  2. 它有一个孩子,所以for执行。for child in self.left创建 a 创建新建新迭代器调自self.left,它是一个节点对象本身(it2)
  3. 和2的逻辑相同 和新的逻辑iterator创建(it3)
  4. 现在我们到达树的左边it3他们没有儿女,所以它是继续的,yield self.value
  5. 下通电话next(it3)它产生StopIteration并且存在,因为它没有子女的权利(直到功能结束,没有任何成果)
  6. it1it2仍在活动----他们没有用尽,也没有召唤。next(it2)将产生价值,而不是提高StopIteration
  7. 现在我们又回到it2和调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调-next(it2)直至它停止时:紧接着yield child语句。由于它不再留下孩子,所以它继续并产生它self.val.

这里的下场是 每一次迭代创建子编辑器以绕过树, 并保持当前迭代器的状态。 一旦它到达尾端, 它就会绕过堆叠, 并按正确的顺序返回值( 最低的收益率先返回 ) 。

您的代码示例在不同的技术中 做了类似的事情: 它包含一个单元素列表每个子子对每个子子子, 然后在下一个迭代中, 它弹出它, 运行当前对象的函数代码( 因此)self).

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。