考虑以下几点:

@property
def name(self):

    if not hasattr(self, '_name'):

        # expensive calculation
        self._name = 1 + 1

    return self._name

我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)

PS,真正的计算不依赖于可变值


当前回答

听起来好像您不是在要求一个通用的记忆化装饰器(也就是说,您对想要缓存不同参数值的返回值的一般情况不感兴趣)。也就是说,你想要这样:

x = obj.name  # expensive
y = obj.name  # cheap

而一个通用的记忆装饰器会给你这样的:

x = obj.name()  # expensive
y = obj.name()  # cheap

我认为方法调用语法是更好的风格,因为它暗示了昂贵计算的可能性,而属性语法暗示了快速查找。

[更新:我之前链接并引用的基于类的记忆化装饰器不适用于方法。我用decorator函数替换了它。如果你愿意使用通用的记忆装饰器,这里有一个简单的:

def memoize(function):
  memo = {}
  def wrapper(*args):
    if args in memo:
      return memo[args]
    else:
      rv = function(*args)
      memo[args] = rv
      return rv
  return wrapper

使用示例:

@memoize
def fibonacci(n):
  if n < 2: return n
  return fibonacci(n - 1) + fibonacci(n - 2)

可以在这里找到另一个对缓存大小有限制的内存装饰器。

其他回答

class memorize(dict):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args):
        return self[args]

    def __missing__(self, key):
        result = self[key] = self.func(*key)
        return result

示例使用:

>>> @memorize
... def foo(a, b):
...     return a * b
>>> foo(2, 4)
8
>>> foo
{(2, 4): 8}
>>> foo('hi', 3)
'hihihi'
>>> foo
{(2, 4): 8, ('hi', 3): 'hihihi'}

听起来好像您不是在要求一个通用的记忆化装饰器(也就是说,您对想要缓存不同参数值的返回值的一般情况不感兴趣)。也就是说,你想要这样:

x = obj.name  # expensive
y = obj.name  # cheap

而一个通用的记忆装饰器会给你这样的:

x = obj.name()  # expensive
y = obj.name()  # cheap

我认为方法调用语法是更好的风格,因为它暗示了昂贵计算的可能性,而属性语法暗示了快速查找。

[更新:我之前链接并引用的基于类的记忆化装饰器不适用于方法。我用decorator函数替换了它。如果你愿意使用通用的记忆装饰器,这里有一个简单的:

def memoize(function):
  memo = {}
  def wrapper(*args):
    if args in memo:
      return memo[args]
    else:
      rv = function(*args)
      memo[args] = rv
      return rv
  return wrapper

使用示例:

@memoize
def fibonacci(n):
  if n < 2: return n
  return fibonacci(n - 1) + fibonacci(n - 2)

可以在这里找到另一个对缓存大小有限制的内存装饰器。

Werkzeug有一个cached_property装饰器(docs, source)

from functools import wraps


def cache(maxsize=128):
    cache = {}

    def decorator(func):
        @wraps(func)
        def inner(*args, no_cache=False, **kwargs):
            if no_cache:
                return func(*args, **kwargs)

            key_base = "_".join(str(x) for x in args)
            key_end = "_".join(f"{k}:{v}" for k, v in kwargs.items())
            key = f"{key_base}-{key_end}"

            if key in cache:
                return cache[key]

            res = func(*args, **kwargs)

            if len(cache) > maxsize:
                del cache[list(cache.keys())[0]]
                cache[key] = res

            return res

        return inner

    return decorator


def async_cache(maxsize=128):
    cache = {}

    def decorator(func):
        @wraps(func)
        async def inner(*args, no_cache=False, **kwargs):
            if no_cache:
                return await func(*args, **kwargs)

            key_base = "_".join(str(x) for x in args)
            key_end = "_".join(f"{k}:{v}" for k, v in kwargs.items())
            key = f"{key_base}-{key_end}"

            if key in cache:
                return cache[key]

            res = await func(*args, **kwargs)

            if len(cache) > maxsize:
                del cache[list(cache.keys())[0]]
                cache[key] = res

            return res

        return inner

    return decorator

示例使用

import asyncio
import aiohttp


# Removes the aiohttp ClientSession instance warning.
class HTTPSession(aiohttp.ClientSession):
    """ Abstract class for aiohttp. """
    
    def __init__(self, loop=None) -> None:
        super().__init__(loop=loop or asyncio.get_event_loop())

    def __del__(self) -> None:
        if not self.closed:
            self.loop.run_until_complete(self.close())
            self.loop.close()
 

        return 
       

            

session = HTTPSession()

@async_cache()
async def query(url, method="get", res_method="text", *args, **kwargs):
    async with getattr(session, method.lower())(url, *args, **kwargs) as res:
        return await getattr(res, res_method)()


async def get(url, *args, **kwargs):
    return await query(url, "get", *args, **kwargs)
 

async def post(url, *args, **kwargs):
    return await query(url, "post", *args, **kwargs)

async def delete(url, *args, **kwargs):
    return await query(url, "delete", *args, **kwargs)

如果你正在使用Django框架,它有这样一个属性来缓存API的视图或响应 使用@cache_page(time),也可以有其他选项。

例子:

@cache_page(60 * 15, cache="special_cache")
def my_view(request):
    ...

更多细节可以在这里找到。