我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
当前回答
另一个例子: 输入列表
error_list = ['[br]', '[ex]', 'Something']
words = ['how', 'much[ex]', 'is[br]', 'the', 'fish[br]', 'noSomething', 'really']
期望的输出将是
words = ['how', 'much', 'is', 'the', 'fish', 'no', 'really']
代码:
[n[0][0] if len(n[0]) else n[1] for n in [[[w.replace(e,"") for e in error_list if e in w],w] for w in words]]
其他回答
你真的不应该这样做,但我觉得这太酷了:
>>> replacements = {'cond1':'text1', 'cond2':'text2'}
>>> cmd = 'answer = s'
>>> for k,v in replacements.iteritems():
>>> cmd += ".replace(%s, %s)" %(k,v)
>>> exec(cmd)
现在,答案是所有替换的结果
再说一次,这是非常俗气的,不是你应该经常使用的东西。但我很高兴知道如果你需要的话,你可以这样做。
您可以使用pandas库和replace函数,它既支持精确匹配,也支持正则表达式替换。例如:
df = pd.DataFrame({'text': ['Billy is going to visit Rome in November', 'I was born in 10/10/2010', 'I will be there at 20:00']})
to_replace=['Billy','Rome','January|February|March|April|May|June|July|August|September|October|November|December', '\d{2}:\d{2}', '\d{2}/\d{2}/\d{4}']
replace_with=['name','city','month','time', 'date']
print(df.text.replace(to_replace, replace_with, regex=True))
修改后的文本为:
0 name is going to visit city in month
1 I was born in date
2 I will be there at time
你可以在这里找到一个例子。请注意,文本上的替换是按照它们在列表中出现的顺序进行的
在我的情况下,我需要一个简单的唯一键替换名称,所以我想到了这个:
a = 'This is a test string.'
b = {'i': 'I', 's': 'S'}
for x,y in b.items():
a = a.replace(x, y)
>>> a
'ThIS IS a teSt StrIng.'
从安德鲁的宝贵答案开始,我开发了一个脚本,从一个文件加载字典,并详细说明所有文件上打开的文件夹做替换。脚本从一个外部文件加载映射,您可以在该文件中设置分隔符。我是一个初学者,但我发现这个脚本在多个文件中做多个替换时非常有用。它在几秒钟内加载了一个包含1000多个条目的字典。这并不优雅,但对我来说很管用
import glob
import re
mapfile = input("Enter map file name with extension eg. codifica.txt: ")
sep = input("Enter map file column separator eg. |: ")
mask = input("Enter search mask with extension eg. 2010*txt for all files to be processed: ")
suff = input("Enter suffix with extension eg. _NEW.txt for newly generated files: ")
rep = {} # creation of empy dictionary
with open(mapfile) as temprep: # loading of definitions in the dictionary using input file, separator is prompted
for line in temprep:
(key, val) = line.strip('\n').split(sep)
rep[key] = val
for filename in glob.iglob(mask): # recursion on all the files with the mask prompted
with open (filename, "r") as textfile: # load each file in the variable text
text = textfile.read()
# start replacement
#rep = dict((re.escape(k), v) for k, v in rep.items()) commented to enable the use in the mapping of re reserved characters
pattern = re.compile("|".join(rep.keys()))
text = pattern.sub(lambda m: rep[m.group(0)], text)
#write of te output files with the prompted suffice
target = open(filename[:-4]+"_NEW.txt", "w")
target.write(text)
target.close()
从Python 3.8开始,并引入赋值表达式(PEP 572)(:=运算符),我们可以在一个列表理解式中应用替换:
# text = "The quick brown fox jumps over the lazy dog"
# replacements = [("brown", "red"), ("lazy", "quick")]
[text := text.replace(a, b) for a, b in replacements]
# text = 'The quick red fox jumps over the quick dog'