我想使用.replace函数替换多个字符串。

我目前有

string.replace("condition1", "")

但想要一些像

string.replace("condition1", "").replace("condition2", "text")

尽管这样的语法感觉不太好

正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段


当前回答

我的方法是首先将字符串标记化,然后决定每个标记是否包含它。

潜在地,如果我们可以假设一个hashmap/set的O(1)查找,可能会更好:

remove_words = {"we", "this"}
target_sent = "we should modify this string"
target_sent_words = target_sent.split()
filtered_sent = " ".join(list(filter(lambda word: word not in remove_words, target_sent_words)))

Filtered_sent现在是'应该修改字符串'

其他回答

下面是一个简短的例子,应该做的技巧与正则表达式:

import re

rep = {"condition1": "", "condition2": "text"} # define desired replacements here

# use these three lines to do the replacement
rep = dict((re.escape(k), v) for k, v in rep.iteritems()) 
#Python 3 renamed dict.iteritems to dict.items so use rep.items() for latest versions
pattern = re.compile("|".join(rep.keys()))
text = pattern.sub(lambda m: rep[re.escape(m.group(0))], text)

例如:

>>> pattern.sub(lambda m: rep[re.escape(m.group(0))], "(condition1) and --condition2--")
'() and --text--'

从安德鲁的宝贵答案开始,我开发了一个脚本,从一个文件加载字典,并详细说明所有文件上打开的文件夹做替换。脚本从一个外部文件加载映射,您可以在该文件中设置分隔符。我是一个初学者,但我发现这个脚本在多个文件中做多个替换时非常有用。它在几秒钟内加载了一个包含1000多个条目的字典。这并不优雅,但对我来说很管用

import glob
import re

mapfile = input("Enter map file name with extension eg. codifica.txt: ")
sep = input("Enter map file column separator eg. |: ")
mask = input("Enter search mask with extension eg. 2010*txt for all files to be processed: ")
suff = input("Enter suffix with extension eg. _NEW.txt for newly generated files: ")

rep = {} # creation of empy dictionary

with open(mapfile) as temprep: # loading of definitions in the dictionary using input file, separator is prompted
    for line in temprep:
        (key, val) = line.strip('\n').split(sep)
        rep[key] = val

for filename in glob.iglob(mask): # recursion on all the files with the mask prompted

    with open (filename, "r") as textfile: # load each file in the variable text
        text = textfile.read()

        # start replacement
        #rep = dict((re.escape(k), v) for k, v in rep.items()) commented to enable the use in the mapping of re reserved characters
        pattern = re.compile("|".join(rep.keys()))
        text = pattern.sub(lambda m: rep[m.group(0)], text)

        #write of te output files with the prompted suffice
        target = open(filename[:-4]+"_NEW.txt", "w")
        target.write(text)
        target.close()

下面是另一种使用字典的方法:

listA="The cat jumped over the house".split()
modify = {word:word for number,word in enumerate(listA)}
modify["cat"],modify["jumped"]="dog","walked"
print " ".join(modify[x] for x in listA)

您可以使用pandas库和replace函数,它既支持精确匹配,也支持正则表达式替换。例如:

df = pd.DataFrame({'text': ['Billy is going to visit Rome in November', 'I was born in 10/10/2010', 'I will be there at 20:00']})

to_replace=['Billy','Rome','January|February|March|April|May|June|July|August|September|October|November|December', '\d{2}:\d{2}', '\d{2}/\d{2}/\d{4}']
replace_with=['name','city','month','time', 'date']

print(df.text.replace(to_replace, replace_with, regex=True))

修改后的文本为:

0    name is going to visit city in month
1                      I was born in date
2                 I will be there at time

你可以在这里找到一个例子。请注意,文本上的替换是按照它们在列表中出现的顺序进行的

这是我对这个问题的解决办法。我把它用在聊天机器人上,一次替换不同的单词。

def mass_replace(text, dct):
    new_string = ""
    old_string = text
    while len(old_string) > 0:
        s = ""
        sk = ""
        for k in dct.keys():
            if old_string.startswith(k):
                s = dct[k]
                sk = k
        if s:
            new_string+=s
            old_string = old_string[len(sk):]
        else:
            new_string+=old_string[0]
            old_string = old_string[1:]
    return new_string

print mass_replace("The dog hunts the cat", {"dog":"cat", "cat":"dog"})

这就成了猫捉狗