在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
当前回答
以下是我的一些建议:
尝试使用默认的R数据集如果您有自己的数据集,请将其包含在dput中,这样其他人可以更轻松地帮助您除非确有必要,否则不要使用install.package(),人们会理解您是否只使用require或library尽量简明扼要,有一些数据集尽量简单地描述您需要的输出问问题之前自己做上传图片很容易,所以如果你有还包括您可能遇到的任何错误
所有这些都是可复制示例的一部分。
其他回答
除了我发现非常有趣的上述所有答案之外,有时也很容易,正如这里所讨论的:如何制作一个最小的可重复示例来获得R的帮助
有许多方法可以创建随机向量创建一个100个数字的向量,其中R中的随机值舍入为2个小数或R中的一个随机矩阵:
mydf1<- matrix(rnorm(20),nrow=20,ncol=5)
请注意,由于维度等各种原因,有时很难共享给定的数据。然而,上述所有答案都很好,在想要制作可复制的数据示例时,思考和使用这些答案非常重要。但请注意,为了使数据与原始数据一样具有代表性(以防OP无法共享原始数据),最好在数据示例中添加一些信息(如果我们将数据称为mydf1)
class(mydf1)
# this shows the type of the data you have
dim(mydf1)
# this shows the dimension of your data
此外,应该知道可以是数据结构的数据的类型、长度和属性
#found based on the following
typeof(mydf1), what it is.
length(mydf1), how many elements it contains.
attributes(mydf1), additional arbitrary metadata.
#If you cannot share your original data, you can str it and give an idea about the structure of your data
head(str(mydf1))
这是一个很好的指南。
最重要的一点是:制作一小段代码,我们可以运行它来了解问题所在。一个有用的函数是dput(),但是如果您有非常大的数据,那么您可能需要制作一个小样本数据集,或者只使用前10行左右。
编辑:
此外,确保您确定了问题所在。示例不应该是一个完整的R脚本,其中包含“在第200行出现错误”。如果您使用R(我爱浏览器())和Google中的调试工具,那么您应该能够真正确定问题所在,并重现一个同样错误的小例子。
最初的帖子指的是现已退役的数据营的小提琴演奏服务。它已被重新命名为数据营灯,不能像我的回答所示的那样容易嵌入。
我想知道http://old.r-fiddle.org/链接可能是分享问题的一种非常简单的方式。它接收一个唯一的ID,比如,甚至可以考虑将其嵌入SO中。
就我个人而言,我更喜欢“一”行。大致如下:
my.df <- data.frame(col1 = sample(c(1,2), 10, replace = TRUE),
col2 = as.factor(sample(10)), col3 = letters[1:10],
col4 = sample(c(TRUE, FALSE), 10, replace = TRUE))
my.list <- list(list1 = my.df, list2 = my.df[3], list3 = letters)
数据结构应该模仿作者问题的想法,而不是准确的逐字结构。当变量不覆盖我自己的变量或函数(如df)时,我真的很感激。
或者,你可以切几个角,指向一个预先存在的数据集,比如:
library(vegan)
data(varespec)
ord <- metaMDS(varespec)
不要忘记提及您可能使用的任何特殊软件包。
如果你想在更大的物体上演示一些东西,你可以尝试
my.df2 <- data.frame(a = sample(10e6), b = sample(letters, 10e6, replace = TRUE))
如果通过光栅包处理空间数据,则可以生成一些随机数据。在包装小插曲中可以找到很多例子,但这里有一个小亮点。
library(raster)
r1 <- r2 <- r3 <- raster(nrow=10, ncol=10)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))
s <- stack(r1, r2, r3)
如果您需要一些在sp中实现的空间对象,可以通过“空间”包中的外部文件(如ESRI shapefile)获取一些数据集(请参见任务视图中的空间视图)。
library(rgdal)
ogrDrivers()
dsn <- system.file("vectors", package = "rgdal")[1]
ogrListLayers(dsn)
ogrInfo(dsn=dsn, layer="cities")
cities <- readOGR(dsn=dsn, layer="cities")
我正在开发wakefield包,以解决快速共享可复制数据的需求,有时dput对较小的数据集很好,但我们处理的许多问题要大得多,通过dput共享如此大的数据集是不切实际的。
关于:
wakefield允许用户共享最少的代码来再现数据。用户设置n(行数)并指定任意数量的预设变量函数(目前有70个),这些函数模拟真实的if数据(如性别、年龄、收入等)
安装:
目前(2015年6月11日),wakefield是一个GitHub包,但在编写单元测试后,最终将转到CRAN。要快速安装,请使用:
if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/wakefield")
例子:
下面是一个示例:
r_data_frame(
n = 500,
id,
race,
age,
sex,
hour,
iq,
height,
died
)
这将产生:
ID Race Age Sex Hour IQ Height Died
1 001 White 33 Male 00:00:00 104 74 TRUE
2 002 White 24 Male 00:00:00 78 69 FALSE
3 003 Asian 34 Female 00:00:00 113 66 TRUE
4 004 White 22 Male 00:00:00 124 73 TRUE
5 005 White 25 Female 00:00:00 95 72 TRUE
6 006 White 26 Female 00:00:00 104 69 TRUE
7 007 Black 30 Female 00:00:00 111 71 FALSE
8 008 Black 29 Female 00:00:00 100 64 TRUE
9 009 Asian 25 Male 00:30:00 106 70 FALSE
10 010 White 27 Male 00:30:00 121 68 FALSE
.. ... ... ... ... ... ... ... ...