如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
我喜欢Onur的答案,但会扩展到包括一个可选的toJSON()方法,用于对象序列化自己:
def dumper(obj):
try:
return obj.toJSON()
except:
return obj.__dict__
print json.dumps(some_big_object, default=dumper, indent=2)
其他回答
Json在它可以打印的对象方面受到限制,而jsonpickle(你可能需要一个PIP安装jsonpickle)在它不能缩进文本方面受到限制。如果你想检查一个你不能改变类的对象的内容,我仍然找不到比:
import json
import jsonpickle
...
print json.dumps(json.loads(jsonpickle.encode(object)), indent=2)
注意:他们仍然不能打印对象方法。
你知道预期产量是多少吗?例如,这个可以吗?
>>> f = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'
在这种情况下,你只需调用json.dumps(f.__dict__)。
如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。
对于一个简单的例子,请参见下面。
>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
def default(self, o):
return o.__dict__
>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'
然后你把这个类作为cls kwarg传递给json.dumps()方法:
json.dumps(cls=MyEncoder)
如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:
>>> def from_json(json_object):
if 'fname' in json_object:
return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>>
为了在10年前的火灾中再添加一个日志,我还将为这个任务提供数据类向导,假设您使用的是Python 3.6+。这可以很好地用于数据类,这实际上是3.7+版本的python内置模块。
dataclass-wizard库将把对象(及其所有属性递归地)转换为dict,并使用fromdict使反向(反序列化)非常简单。另外,这里是PyPi链接:https://pypi.org/project/dataclass-wizard/。
import dataclass_wizard
import dataclasses
@dataclasses.dataclass
class A:
hello: str
a_field: int
obj = A('world', 123)
a_dict = dataclass_wizard.asdict(obj)
# {'hello': 'world', 'aField': 123}
或者如果你想要一个字符串:
a_str = jsons.dumps(dataclass_wizard.asdict(obj))
或者您的类是否从dataclass_wizard扩展。JSONWizard:
a_str = your_object.to_json()
最后,标准库还支持Union类型的数据类,这基本上意味着可以将dict反序列化为类C1或C2的对象。例如:
from dataclasses import dataclass
from dataclass_wizard import JSONWizard
@dataclass
class Outer(JSONWizard):
class _(JSONWizard.Meta):
tag_key = 'tag'
auto_assign_tags = True
my_string: str
inner: 'A | B' # alternate syntax: `inner: typing.Union['A', 'B']`
@dataclass
class A:
my_field: int
@dataclass
class B:
my_field: str
my_dict = {'myString': 'test', 'inner': {'tag': 'B', 'myField': 'test'}}
obj = Outer.from_dict(my_dict)
# True
assert repr(obj) == "Outer(my_string='test', inner=B(my_field='test'))"
obj.to_json()
# {"myString": "test", "inner": {"myField": "test", "tag": "B"}}
对于更复杂的类,您可以考虑使用jsonpickle工具:
jsonpickle is a Python library for serialization and deserialization of complex Python objects to and from JSON. The standard Python libraries for encoding Python into JSON, such as the stdlib’s json, simplejson, and demjson, can only handle Python primitives that have a direct JSON equivalent (e.g. dicts, lists, strings, ints, etc.). jsonpickle builds on top of these libraries and allows more complex data structures to be serialized to JSON. jsonpickle is highly configurable and extendable–allowing the user to choose the JSON backend and add additional backends.
(链接到PyPi上的jsonpickle)
我喜欢Onur的答案,但会扩展到包括一个可选的toJSON()方法,用于对象序列化自己:
def dumper(obj):
try:
return obj.toJSON()
except:
return obj.__dict__
print json.dumps(some_big_object, default=dumper, indent=2)