如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
正如在许多其他答案中提到的,您可以将函数传递给json。转储将不是默认支持的类型之一的对象转换为受支持的类型。令人惊讶的是,他们都没有提到最简单的情况,即使用内置函数vars将对象转换为包含其所有属性的dict:
json.dumps(obj, default=vars)
注意,这只涵盖了基本的情况,如果你需要对某些类型进行更具体的序列化(例如排除某些属性或没有__dict__属性的对象),你需要使用自定义函数或JSONEncoder,如其他答案中所述。
其他回答
这是我的3美分… 这演示了一个树状python对象的显式json序列化。 注意:如果你真的想要这样的代码,你可以使用twisted FilePath类。
import json, sys, os
class File:
def __init__(self, path):
self.path = path
def isdir(self):
return os.path.isdir(self.path)
def isfile(self):
return os.path.isfile(self.path)
def children(self):
return [File(os.path.join(self.path, f))
for f in os.listdir(self.path)]
def getsize(self):
return os.path.getsize(self.path)
def getModificationTime(self):
return os.path.getmtime(self.path)
def _default(o):
d = {}
d['path'] = o.path
d['isFile'] = o.isfile()
d['isDir'] = o.isdir()
d['mtime'] = int(o.getModificationTime())
d['size'] = o.getsize() if o.isfile() else 0
if o.isdir(): d['children'] = o.children()
return d
folder = os.path.abspath('.')
json.dump(File(folder), sys.stdout, default=_default)
你知道预期产量是多少吗?例如,这个可以吗?
>>> f = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'
在这种情况下,你只需调用json.dumps(f.__dict__)。
如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。
对于一个简单的例子,请参见下面。
>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
def default(self, o):
return o.__dict__
>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'
然后你把这个类作为cls kwarg传递给json.dumps()方法:
json.dumps(cls=MyEncoder)
如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:
>>> def from_json(json_object):
if 'fname' in json_object:
return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>>
import simplejson
class User(object):
def __init__(self, name, mail):
self.name = name
self.mail = mail
def _asdict(self):
return self.__dict__
print(simplejson.dumps(User('alice', 'alice@mail.com')))
如果使用标准json,则需要定义一个默认函数
import json
def default(o):
return o._asdict()
print(json.dumps(User('alice', 'alice@mail.com'), default=default))
任何人都想在没有外部库的情况下使用基本转换,这只是如何使用以下方式覆盖自定义类的__iter__ & __str__函数。
class JSONCustomEncoder(json.JSONEncoder):
def default(self, obj):
return obj.__dict__
class Student:
def __init__(self, name: str, slug: str):
self.name = name
self.age = age
def __iter__(self):
yield from {
"name": self.name,
"age": self.age,
}.items()
def __str__(self):
return json.dumps(
self.__dict__, cls=JSONCustomEncoder, ensure_ascii=False
)
通过在dict()中进行包装来使用该对象,从而保留数据。
s = Student("aman", 24)
dict(s)
当我试图将Peewee的模型存储到PostgreSQL JSONField时,我遇到了这个问题。
在苦苦挣扎了一段时间后,这是通解。
我的解决方案的关键是浏览Python的源代码,并意识到代码文档(这里描述的)已经解释了如何扩展现有的json。转储以支持其他数据类型。
假设你现在有一个模型,其中包含一些不能序列化为JSON的字段,并且包含JSON字段的模型最初看起来是这样的:
class SomeClass(Model):
json_field = JSONField()
只需要像这样定义一个自定义JSONEncoder:
class CustomJsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, SomeTypeUnsupportedByJsonDumps):
return < whatever value you want >
return json.JSONEncoder.default(self, obj)
@staticmethod
def json_dumper(obj):
return json.dumps(obj, cls=CustomJsonEncoder)
然后像下面这样在你的JSONField中使用它:
class SomeClass(Model):
json_field = JSONField(dumps=CustomJsonEncoder.json_dumper)
键是上面的默认(self, obj)方法。对于每一个……你从Python收到的不是JSON序列化的投诉,只需添加代码来处理不可序列化的JSON类型(如Enum或datetime)
例如,下面是我如何支持从Enum继承的类:
class TransactionType(Enum):
CURRENT = 1
STACKED = 2
def default(self, obj):
if isinstance(obj, TransactionType):
return obj.value
return json.JSONEncoder.default(self, obj)
最后,使用上面实现的代码,您可以将任何Peewee模型转换为如下所示的json可序列化对象:
peewee_model = WhateverPeeweeModel()
new_model = SomeClass()
new_model.json_field = model_to_dict(peewee_model)
虽然上面的代码(在某种程度上)是针对Peewee的,但我认为:
它一般适用于其他orm (Django等) 如果你理解json。dump可以工作,这个解决方案一般也适用于Python(无ORM)
有任何问题,请在评论区留言。谢谢!