如何在整数列表中找到重复项并创建重复项的另一个列表?
当前回答
我没有看到一个纯粹使用迭代器的解决方案,所以我们开始吧
这需要对列表进行排序,这可能是这里的缺点。
a = [1,2,3,2,1,5,6,5,5,5]
a.sort()
set(map(lambda x: x[0], filter(lambda x: x[0] == x[1], zip(a, a[1:]))))
{1, 2, 5}
你可以用这段代码轻松检查你的机器有多快,有一百万潜在的重复:
首先生成数据
import random
from itertools import chain
a = list(chain(*[[n] * random.randint(1, 2) for n in range(1000000)]))
并运行测试:
set(map(lambda x: x[0], filter(lambda x: x[0] == x[1], zip(a, a[1:]))))
不用说,这个解决方案只在列表已经排序的情况下才有效。
其他回答
你不需要计数,只需要该物品之前是否被看到过。把这个答案用在这个问题上:
def list_duplicates(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]
以防速度很重要,这里有一些时间安排:
# file: test.py
import collections
def thg435(l):
return [x for x, y in collections.Counter(l).items() if y > 1]
def moooeeeep(l):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in l if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def RiteshKumar(l):
return list(set([x for x in l if l.count(x) > 1]))
def JohnLaRooy(L):
seen = set()
seen2 = set()
seen_add = seen.add
seen2_add = seen2.add
for item in L:
if item in seen:
seen2_add(item)
else:
seen_add(item)
return list(seen2)
l = [1,2,3,2,1,5,6,5,5,5]*100
以下是结果:(做得好@JohnLaRooy!)
$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop
有趣的是,除了计时本身,当使用pypy时,排名也略有变化。最有趣的是,基于counter的方法极大地受益于pypy的优化,而我建议的方法缓存方法似乎几乎没有任何效果。
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop
显然,这种效应与输入数据的“重复性”有关。我设置了l = [random.randrange(1000000) for I in xrange(10000)],得到了这些结果:
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop
raw_list = [1,2,3,3,4,5,6,6,7,2,3,4,2,3,4,1,3,4,]
clean_list = list(set(raw_list))
duplicated_items = []
for item in raw_list:
try:
clean_list.remove(item)
except ValueError:
duplicated_items.append(item)
print(duplicated_items)
# [3, 6, 2, 3, 4, 2, 3, 4, 1, 3, 4]
基本上可以通过转换为set (clean_list)来删除重复项,然后迭代raw_list,同时删除出现在raw_list中的clean列表中的每个项。如果item未找到,则捕获引发的ValueError异常,并将该item添加到duplicated_items列表中。
如果需要重复项的索引,只需枚举列表并使用索引即可。(对于index, item in enumerate(raw_list):),对于大型列表(比如上千+的元素)来说,这是更快和优化的
一个非常简单的解决方案,但是复杂度是O(n*n)。
>>> xs = [1,2,3,4,4,5,5,6,1]
>>> set([x for x in xs if xs.count(x) > 1])
set([1, 4, 5])
使用toolz时:
from toolz import frequencies, valfilter
a = [1,2,2,3,4,5,4]
>>> list(valfilter(lambda count: count > 1, frequencies(a)).keys())
[2,4]
要删除重复项,请使用集合(a)。要打印副本,可以这样做:
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print([item for item, count in collections.Counter(a).items() if count > 1])
## [1, 2, 5]
请注意Counter并不是特别有效(计时),可能会在这里过度使用。Set会表现得更好。这段代码以源顺序计算一个唯一元素的列表:
seen = set()
uniq = []
for x in a:
if x not in seen:
uniq.append(x)
seen.add(x)
或者,更简洁地说:
seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]
我不推荐后一种风格,因为它不清楚not seen.add(x)在做什么(set add()方法总是返回None,因此需要not)。
计算没有库的重复元素列表:
seen = set()
dupes = []
for x in a:
if x in seen:
dupes.append(x)
else:
seen.add(x)
或者,更简洁地说:
seen = set()
dupes = [x for x in a if x in seen or seen.add(x)]
如果列表元素不可哈希,则不能使用set /dicts,必须使用二次时间解决方案(逐个比较)。例如:
a = [[1], [2], [3], [1], [5], [3]]
no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]
dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录