有人能解释一下构建堆的复杂性吗?

将项插入到堆中是O(logn),并且插入被重复n/2次(剩余的是叶子,不能违反堆属性)。所以,我认为这意味着复杂性应该是O(n log n)。

换言之,对于我们“heapify”的每个项目,它有可能必须为堆的每个级别(即logn级别)过滤(即筛选)一次。

我错过了什么?


当前回答

“构建堆的线性时间界限可以通过计算堆中所有节点的高度之和来显示,这是虚线的最大数量。对于包含N=2^(h+1)–1个节点的高度为h的完美二叉树,节点高度之和为N–h–1。因此它是O(N)。"

其他回答

连续插入可通过以下方式描述:

T = O(log(1) + log(2) + .. + log(n)) = O(log(n!))

通过starling近似,n!=~O(n^(n+O(1))),因此T=~O(nlog(n))

希望这有帮助,O(n)的最佳方式是对给定集合使用构建堆算法(排序无关紧要)。

直观地:

“复杂性应该是O(nLog n)……对于我们“heapify”的每个项目,它有可能必须为堆的每个级别(即log n级别)过滤一次。”

不完全是。您的逻辑不会产生严格的界限——它会过度估计每个堆的复杂性。如果从下往上构建,插入(heapify)可以比O(log(n))小得多。流程如下:

(步骤1)前n/2个元素位于堆的底行。h=0,因此不需要heapify。

(步骤2)接下来的n/22个元素从底部向上排列在第1行。h=1,将过滤器向下堆1级。

(步骤i)接下来的n/2i元素从底部排i。h=i,将过滤器堆成i级。

(步骤log(n))最后一个n/2log2(n)=1元素从底部向上进入行log(n。h=log(n),heapify向下过滤log(n)级别。

注意:在第一步之后,1/2的元素(n/2)已经在堆中,我们甚至不需要调用heapify一次。此外,请注意,实际上只有一个元素,即根元素,会导致完整的log(n)复杂性。


理论上:

构建大小为N的堆的总步骤N可以用数学公式表示。

在高度i处,我们已经显示(上面)将有n/2i+1个元素需要调用heapify,并且我们知道高度i处的heapify是O(i)。这给出了:

最后求和的解可以通过取众所周知的几何级数方程两边的导数来找到:

最后,将x=1/2代入上式得到2。将其代入第一个方程得出:

因此,步骤总数大小为O(n)

在构建堆的情况下,我们从高度开始,logn-1(其中logn是n个元素的树的高度)。对于高度为“h”的每个元素,我们将最大值设置为(logn-h)。

    So total number of traversal would be:-
    T(n) = sigma((2^(logn-h))*h) where h varies from 1 to logn
    T(n) = n((1/2)+(2/4)+(3/8)+.....+(logn/(2^logn)))
    T(n) = n*(sigma(x/(2^x))) where x varies from 1 to logn
     and according to the [sources][1]
    function in the bracket approaches to 2 at infinity.
    Hence T(n) ~ O(n)

如果通过重复插入元素来构建堆,那么它将是O(n log n)。然而,通过以任意顺序插入元素,然后应用算法将它们“堆”成正确的顺序(当然取决于堆的类型),可以更有效地创建新的堆。

看见http://en.wikipedia.org/wiki/Binary_heap,例如“构建堆”。在这种情况下,您基本上从树的底层开始工作,交换父节点和子节点,直到满足堆条件。

我真的很喜欢杰里米·韦斯特的解释。。。。这里给出了另一种非常容易理解的方法http://courses.washington.edu/css343/zander/NotesProbs/heapcomplexity

因为,buildheap依赖于使用依赖于heapify,而shiftdown方法依赖于所有节点的高度之和。因此,求出节点高度之和S=(2^i*(h-i))从i=0到i=h的总和,其中h=logn是树的高度求解s,我们得到s=2^(h+1)-1-(h+1)因为,n=2^(h+1)-1s=n-h-1=n-logn-1s=O(n),所以构建堆的复杂度是O(n)。