我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:
is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));
but:
under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);
在最后的坐标中,他忘记把解移回来。所以不是:
var i1 = {x:t1,y:m*t1+b}
but:
Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};
整个函数就变成:
function interceptOnCircle(p1, p2, c, r) {
//p1 is the first line point
//p2 is the second line point
//c is the circle's center
//r is the circle's radius
var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
var p4 = {x:p2.x - c.x, y:p2.y - c.y};
var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
var b = p3.y - m * p3.x; //y-intercept of line
var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign
if (underRadical < 0) {
//line completely missed
return false;
} else {
var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
return [i1, i2];
}
}
其他回答
似乎没人考虑投影,我是不是完全跑题了?
将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。
是这样的:
社区编辑:
对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。
/**
* Returns the distance from line segment AB to point C
*/
function distanceSegmentToPoint(A, B, C) {
// Compute vectors AC and AB
const AC = sub(C, A);
const AB = sub(B, A);
// Get point D by taking the projection of AC onto AB then adding the offset of A
const D = add(proj(AC, AB), A);
const AD = sub(D, A);
// D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
// We can use either component, but choose larger value to reduce the chance of dividing by zero
const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;
// Check if D is off either end of the line segment
if (k <= 0.0) {
return Math.sqrt(hypot2(C, A));
} else if (k >= 1.0) {
return Math.sqrt(hypot2(C, B));
}
return Math.sqrt(hypot2(C, D));
}
对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。
// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));
// Function for projecting some vector a onto b
function proj(a, b) {
const k = dot(a, b) / dot(b, b);
return {x: k * b.x, y: k * b.y};
}
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965
尽管该解决方案中的is_on函数需要修改:
函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }
' VB.NET - Code
Function CheckLineSegmentCircleIntersection(x1 As Double, y1 As Double, x2 As Double, y2 As Double, xc As Double, yc As Double, r As Double) As Boolean
Static xd As Double = 0.0F
Static yd As Double = 0.0F
Static t As Double = 0.0F
Static d As Double = 0.0F
Static dx_2_1 As Double = 0.0F
Static dy_2_1 As Double = 0.0F
dx_2_1 = x2 - x1
dy_2_1 = y2 - y1
t = ((yc - y1) * dy_2_1 + (xc - x1) * dx_2_1) / (dy_2_1 * dy_2_1 + dx_2_1 * dx_2_1)
If 0 <= t And t <= 1 Then
xd = x1 + t * dx_2_1
yd = y1 + t * dy_2_1
d = Math.Sqrt((xd - xc) * (xd - xc) + (yd - yc) * (yd - yc))
Return d <= r
Else
d = Math.Sqrt((xc - x1) * (xc - x1) + (yc - y1) * (yc - y1))
If d <= r Then
Return True
Else
d = Math.Sqrt((xc - x2) * (xc - x2) + (yc - y2) * (yc - y2))
If d <= r Then
Return True
Else
Return False
End If
End If
End If
End Function
好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。
y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。
也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。
这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!