Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

一个新的卷积配方被合并到Python 3.10中。

鉴于


import collections, operator

from itertools import chain, repeat


size = 3 + 1
kernel = [1/size] * size                                              

Code

def convolve(signal, kernel):
    # See:  https://betterexplained.com/articles/intuitive-convolution/
    # convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
    # convolve(data, [1, -1]) --> 1st finite difference (1st derivative)
    # convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
    kernel = list(reversed(kernel))
    n = len(kernel)
    window = collections.deque([0] * n, maxlen=n)
    for x in chain(signal, repeat(0, n-1)):
        window.append(x)
        yield sum(map(operator.mul, kernel, window))

Demo

list(convolve(range(1, 6), kernel))
# [0.25, 0.75, 1.5, 2.5, 3.5, 3.0, 2.25, 1.25]

细节

卷积是一种可以应用于移动平均的一般数学运算。其思想是,给定一些数据,您将数据子集(窗口)作为“掩码”或“内核”在数据中滑动,在每个窗口上执行特定的数学操作。在移动平均的情况下,核是平均值:

现在可以通过more_itertools.convolve使用这个实现。 More_itertools是一个流行的第三方包;通过> PIP Install more_itertools安装。

其他回答

仅使用Python标准库(内存高效)

只提供标准库deque的另一个版本。令我惊讶的是,大多数答案都使用pandas或numpy。

def moving_average(iterable, n=3):
    d = deque(maxlen=n)
    for i in iterable:
        d.append(i)
        if len(d) == n:
            yield sum(d)/n

r = moving_average([40, 30, 50, 46, 39, 44])
assert list(r) == [40.0, 42.0, 45.0, 43.0]

实际上,我在python文档中找到了另一个实现

def moving_average(iterable, n=3):
    # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable)
    d = deque(itertools.islice(it, n-1))
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

然而,在我看来,实现似乎比它应该的要复杂一些。但它肯定在标准python文档中是有原因的,有人能评论一下我的实现和标准文档吗?

出于教学目的,让我再添加两个Numpy解决方案(比cumsum解决方案慢):

import numpy as np
from numpy.lib.stride_tricks import as_strided

def ra_strides(arr, window):
    ''' Running average using as_strided'''
    n = arr.shape[0] - window + 1
    arr_strided = as_strided(arr, shape=[n, window], strides=2*arr.strides)
    return arr_strided.mean(axis=1)

def ra_add(arr, window):
    ''' Running average using add.reduceat'''
    n = arr.shape[0] - window + 1
    indices = np.array([0, window]*n) + np.repeat(np.arange(n), 2)
    arr = np.append(arr, 0)
    return np.add.reduceat(arr, indices )[::2]/window

使用的函数:as_strided, add.reduceat

从其他答案来看,我不认为这是问题所要求的,但我需要保持一个不断增长的值列表的运行平均值。

因此,如果你想保持从某个地方(站点,测量设备等)获取的值的列表和最近n个值更新的平均值,你可以使用下面的代码,这将最大限度地减少添加新元素的工作:

class Running_Average(object):
    def __init__(self, buffer_size=10):
        """
        Create a new Running_Average object.

        This object allows the efficient calculation of the average of the last
        `buffer_size` numbers added to it.

        Examples
        --------
        >>> a = Running_Average(2)
        >>> a.add(1)
        >>> a.get()
        1.0
        >>> a.add(1)  # there are two 1 in buffer
        >>> a.get()
        1.0
        >>> a.add(2)  # there's a 1 and a 2 in the buffer
        >>> a.get()
        1.5
        >>> a.add(2)
        >>> a.get()  # now there's only two 2 in the buffer
        2.0
        """
        self._buffer_size = int(buffer_size)  # make sure it's an int
        self.reset()

    def add(self, new):
        """
        Add a new number to the buffer, or replaces the oldest one there.
        """
        new = float(new)  # make sure it's a float
        n = len(self._buffer)
        if n < self.buffer_size:  # still have to had numbers to the buffer.
            self._buffer.append(new)
            if self._average != self._average:  # ~ if isNaN().
                self._average = new  # no previous numbers, so it's new.
            else:
                self._average *= n  # so it's only the sum of numbers.
                self._average += new  # add new number.
                self._average /= (n+1)  # divide by new number of numbers.
        else:  # buffer full, replace oldest value.
            old = self._buffer[self._index]  # the previous oldest number.
            self._buffer[self._index] = new  # replace with new one.
            self._index += 1  # update the index and make sure it's...
            self._index %= self.buffer_size  # ... smaller than buffer_size.
            self._average -= old/self.buffer_size  # remove old one...
            self._average += new/self.buffer_size  # ...and add new one...
            # ... weighted by the number of elements.

    def __call__(self):
        """
        Return the moving average value, for the lazy ones who don't want
        to write .get .
        """
        return self._average

    def get(self):
        """
        Return the moving average value.
        """
        return self()

    def reset(self):
        """
        Reset the moving average.

        If for some reason you don't want to just create a new one.
        """
        self._buffer = []  # could use np.empty(self.buffer_size)...
        self._index = 0  # and use this to keep track of how many numbers.
        self._average = float('nan')  # could use np.NaN .

    def get_buffer_size(self):
        """
        Return current buffer_size.
        """
        return self._buffer_size

    def set_buffer_size(self, buffer_size):
        """
        >>> a = Running_Average(10)
        >>> for i in range(15):
        ...     a.add(i)
        ...
        >>> a()
        9.5
        >>> a._buffer  # should not access this!!
        [10.0, 11.0, 12.0, 13.0, 14.0, 5.0, 6.0, 7.0, 8.0, 9.0]

        Decreasing buffer size:
        >>> a.buffer_size = 6
        >>> a._buffer  # should not access this!!
        [9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
        >>> a.buffer_size = 2
        >>> a._buffer
        [13.0, 14.0]

        Increasing buffer size:
        >>> a.buffer_size = 5
        Warning: no older data available!
        >>> a._buffer
        [13.0, 14.0]

        Keeping buffer size:
        >>> a = Running_Average(10)
        >>> for i in range(15):
        ...     a.add(i)
        ...
        >>> a()
        9.5
        >>> a._buffer  # should not access this!!
        [10.0, 11.0, 12.0, 13.0, 14.0, 5.0, 6.0, 7.0, 8.0, 9.0]
        >>> a.buffer_size = 10  # reorders buffer!
        >>> a._buffer
        [5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
        """
        buffer_size = int(buffer_size)
        # order the buffer so index is zero again:
        new_buffer = self._buffer[self._index:]
        new_buffer.extend(self._buffer[:self._index])
        self._index = 0
        if self._buffer_size < buffer_size:
            print('Warning: no older data available!')  # should use Warnings!
        else:
            diff = self._buffer_size - buffer_size
            print(diff)
            new_buffer = new_buffer[diff:]
        self._buffer_size = buffer_size
        self._buffer = new_buffer

    buffer_size = property(get_buffer_size, set_buffer_size)

你可以测试它,例如:

def graph_test(N=200):
    import matplotlib.pyplot as plt
    values = list(range(N))
    values_average_calculator = Running_Average(N/2)
    values_averages = []
    for value in values:
        values_average_calculator.add(value)
        values_averages.append(values_average_calculator())
    fig, ax = plt.subplots(1, 1)
    ax.plot(values, label='values')
    ax.plot(values_averages, label='averages')
    ax.grid()
    ax.set_xlim(0, N)
    ax.set_ylim(0, N)
    fig.show()

这使:

你可以用以下方法计算运行平均值:

import numpy as np

def runningMean(x, N):
    y = np.zeros((len(x),))
    for ctr in range(len(x)):
         y[ctr] = np.sum(x[ctr:(ctr+N)])
    return y/N

但是速度很慢。

幸运的是,numpy包含一个卷积函数,我们可以用它来加快速度。运行均值相当于将x与一个长度为N的向量进行卷积,其中所有元素都等于1/N。卷积的numpy实现包括起始瞬态,所以你必须删除前N-1点:

def runningMeanFast(x, N):
    return np.convolve(x, np.ones((N,))/N)[(N-1):]

在我的机器上,快速版本要快20-30倍,这取决于输入向量的长度和平均窗口的大小。

请注意,卷积确实包括一个“相同”模式,它似乎应该解决开始的瞬态问题,但它在开始和结束之间分割。

比起numpy或scipy,我建议熊猫们更快地做到这一点:

df['data'].rolling(3).mean()

这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:

df['data'].shift(periods=1).rolling(3).mean()