Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?
当前回答
更新:下面的例子展示了老熊猫。Rolling_mean函数,该函数在最近版本的pandas中已被删除。该函数调用的现代等价函数将使用pandas.Series.rolling:
In [8]: pd.Series(x).rolling(window=N).mean().iloc[N-1:].values
Out[8]:
array([ 0.49815397, 0.49844183, 0.49840518, ..., 0.49488191,
0.49456679, 0.49427121])
pandas比NumPy或SciPy更适合这一点。它的函数rolling_mean很方便地完成了这项工作。当输入是一个数组时,它还返回一个NumPy数组。
使用任何定制的纯Python实现都很难在性能上击败rolling_mean。下面是针对两个提议的解决方案的性能示例:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: def running_mean(x, N):
...: cumsum = np.cumsum(np.insert(x, 0, 0))
...: return (cumsum[N:] - cumsum[:-N]) / N
...:
In [4]: x = np.random.random(100000)
In [5]: N = 1000
In [6]: %timeit np.convolve(x, np.ones((N,))/N, mode='valid')
10 loops, best of 3: 172 ms per loop
In [7]: %timeit running_mean(x, N)
100 loops, best of 3: 6.72 ms per loop
In [8]: %timeit pd.rolling_mean(x, N)[N-1:]
100 loops, best of 3: 4.74 ms per loop
In [9]: np.allclose(pd.rolling_mean(x, N)[N-1:], running_mean(x, N))
Out[9]: True
关于如何处理边缘值,也有很好的选项。
其他回答
如果你必须为非常小的数组(少于200个元素)重复这样做,我发现只用线性代数就能得到最快的结果。 最慢的部分是建立你的乘法矩阵y,你只需要做一次,但之后可能会更快。
import numpy as np
import random
N = 100 # window size
size =200 # array length
x = np.random.random(size)
y = np.eye(size, dtype=float)
# prepare matrix
for i in range(size):
y[i,i:i+N] = 1./N
# calculate running mean
z = np.inner(x,y.T)[N-1:]
出于教学目的,让我再添加两个Numpy解决方案(比cumsum解决方案慢):
import numpy as np
from numpy.lib.stride_tricks import as_strided
def ra_strides(arr, window):
''' Running average using as_strided'''
n = arr.shape[0] - window + 1
arr_strided = as_strided(arr, shape=[n, window], strides=2*arr.strides)
return arr_strided.mean(axis=1)
def ra_add(arr, window):
''' Running average using add.reduceat'''
n = arr.shape[0] - window + 1
indices = np.array([0, window]*n) + np.repeat(np.arange(n), 2)
arr = np.append(arr, 0)
return np.add.reduceat(arr, indices )[::2]/window
使用的函数:as_strided, add.reduceat
使用@Aikude的变量,我编写了一行程序。
import numpy as np
mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3
mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)
>>> [2.0, 3.0, 4.0, 5.0, 6.0]
比起numpy或scipy,我建议熊猫们更快地做到这一点:
df['data'].rolling(3).mean()
这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:
df['data'].shift(periods=1).rolling(3).mean()
高效的解决方案
卷积比直接的方法好得多,但(我猜)它使用FFT,因此相当慢。但是,下面的方法特别适用于计算运行平均值
def running_mean(x, N):
cumsum = numpy.cumsum(numpy.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / float(N)
要检查的代码
In[3]: x = numpy.random.random(100000)
In[4]: N = 1000
In[5]: %timeit result1 = numpy.convolve(x, numpy.ones((N,))/N, mode='valid')
10 loops, best of 3: 41.4 ms per loop
In[6]: %timeit result2 = running_mean(x, N)
1000 loops, best of 3: 1.04 ms per loop
注意numpy。allclose(result1, result2)为True,两个方法等价。 N越大,时间差异越大。
警告:虽然cumsum更快,但会增加浮点错误,这可能导致您的结果无效/不正确/不可接受
这里的评论指出了这个浮点错误问题,但我在回答中让它更明显。
# demonstrate loss of precision with only 100,000 points
np.random.seed(42)
x = np.random.randn(100000)+1e6
y1 = running_mean_convolve(x, 10)
y2 = running_mean_cumsum(x, 10)
assert np.allclose(y1, y2, rtol=1e-12, atol=0)
the more points you accumulate over the greater the floating point error (so 1e5 points is noticable, 1e6 points is more significant, more than 1e6 and you may want to resetting the accumulators) you can cheat by using np.longdouble but your floating point error still will get significant for relatively large number of points (around >1e5 but depends on your data) you can plot the error and see it increasing relatively fast the convolve solution is slower but does not have this floating point loss of precision the uniform_filter1d solution is faster than this cumsum solution AND does not have this floating point loss of precision
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录