Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?
当前回答
上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:
忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身
这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。
我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。
N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x)
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)
这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。
输出示例(黑色为raw,蓝色为movavg):
这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。
window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)
其他回答
我觉得使用瓶颈可以很好地解决这个问题
参见下面的基本示例:
import numpy as np
import bottleneck as bn
a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)
“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。
好在瓶颈有助于处理nan值,而且非常高效。
更新:已经提出了更有效的解决方案,scipy的uniform_filter1d可能是“标准”第三方库中最好的,还有一些更新的或专门的库可用。
你可以用np。卷积得到:
np.convolve(x, np.ones(N)/N, mode='valid')
解释
The running mean is a case of the mathematical operation of convolution. For the running mean, you slide a window along the input and compute the mean of the window's contents. For discrete 1D signals, convolution is the same thing, except instead of the mean you compute an arbitrary linear combination, i.e., multiply each element by a corresponding coefficient and add up the results. Those coefficients, one for each position in the window, are sometimes called the convolution kernel. The arithmetic mean of N values is (x_1 + x_2 + ... + x_N) / N, so the corresponding kernel is (1/N, 1/N, ..., 1/N), and that's exactly what we get by using np.ones(N)/N.
边缘
np的模态参数。Convolve指定如何处理边缘。我在这里选择有效模式,因为我认为这是大多数人期望的运行方式,但您可能有其他优先级。下面是一个图表,说明了模式之间的差异:
import numpy as np
import matplotlib.pyplot as plt
modes = ['full', 'same', 'valid']
for m in modes:
plt.plot(np.convolve(np.ones(200), np.ones(50)/50, mode=m));
plt.axis([-10, 251, -.1, 1.1]);
plt.legend(modes, loc='lower center');
plt.show()
如果你必须为非常小的数组(少于200个元素)重复这样做,我发现只用线性代数就能得到最快的结果。 最慢的部分是建立你的乘法矩阵y,你只需要做一次,但之后可能会更快。
import numpy as np
import random
N = 100 # window size
size =200 # array length
x = np.random.random(size)
y = np.eye(size, dtype=float)
# prepare matrix
for i in range(size):
y[i,i:i+N] = 1./N
# calculate running mean
z = np.inner(x,y.T)[N-1:]
高效的解决方案
卷积比直接的方法好得多,但(我猜)它使用FFT,因此相当慢。但是,下面的方法特别适用于计算运行平均值
def running_mean(x, N):
cumsum = numpy.cumsum(numpy.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / float(N)
要检查的代码
In[3]: x = numpy.random.random(100000)
In[4]: N = 1000
In[5]: %timeit result1 = numpy.convolve(x, numpy.ones((N,))/N, mode='valid')
10 loops, best of 3: 41.4 ms per loop
In[6]: %timeit result2 = running_mean(x, N)
1000 loops, best of 3: 1.04 ms per loop
注意numpy。allclose(result1, result2)为True,两个方法等价。 N越大,时间差异越大。
警告:虽然cumsum更快,但会增加浮点错误,这可能导致您的结果无效/不正确/不可接受
这里的评论指出了这个浮点错误问题,但我在回答中让它更明显。
# demonstrate loss of precision with only 100,000 points
np.random.seed(42)
x = np.random.randn(100000)+1e6
y1 = running_mean_convolve(x, 10)
y2 = running_mean_cumsum(x, 10)
assert np.allclose(y1, y2, rtol=1e-12, atol=0)
the more points you accumulate over the greater the floating point error (so 1e5 points is noticable, 1e6 points is more significant, more than 1e6 and you may want to resetting the accumulators) you can cheat by using np.longdouble but your floating point error still will get significant for relatively large number of points (around >1e5 but depends on your data) you can plot the error and see it increasing relatively fast the convolve solution is slower but does not have this floating point loss of precision the uniform_filter1d solution is faster than this cumsum solution AND does not have this floating point loss of precision
上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:
忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身
这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。
我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。
N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x)
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)
这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。
输出示例(黑色为raw,蓝色为movavg):
这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。
window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录