我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
我相信这个答案比这里的其他答案更正确:
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print "{}if {} <= {}:".format(indent, name, threshold)
recurse(tree_.children_left[node], depth + 1)
print "{}else: # if {} > {}".format(indent, name, threshold)
recurse(tree_.children_right[node], depth + 1)
else:
print "{}return {}".format(indent, tree_.value[node])
recurse(0, 1)
这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。
def tree(f0):
if f0 <= 6.0:
if f0 <= 1.5:
return [[ 0.]]
else: # if f0 > 1.5
if f0 <= 4.5:
if f0 <= 3.5:
return [[ 3.]]
else: # if f0 > 3.5
return [[ 4.]]
else: # if f0 > 4.5
return [[ 5.]]
else: # if f0 > 6.0
if f0 <= 8.5:
if f0 <= 7.5:
return [[ 7.]]
else: # if f0 > 7.5
return [[ 8.]]
else: # if f0 > 8.5
return [[ 9.]]
以下是我在其他答案中看到的一些绊脚石:
使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。
其他回答
下面的代码是我在anaconda python 2.7下的方法,加上一个包名“pydot-ng”,以制作具有决策规则的PDF文件。希望对大家有所帮助。
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_leaf_nodes=n)
clf_ = clf.fit(X, data_y)
feature_names = X.columns
class_name = clf_.classes_.astype(int).astype(str)
def output_pdf(clf_, name):
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot_ng as pydot
dot_data = StringIO()
tree.export_graphviz(clf_, out_file=dot_data,
feature_names=feature_names,
class_names=class_name,
filled=True, rounded=True,
special_characters=True,
node_ids=1,)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("%s.pdf"%name)
output_pdf(clf_, name='filename%s'%n)
这是一个树形图
我需要一种更人性化的决策树规则格式。我正在构建开源AutoML Python包,很多时候MLJAR用户希望从树中看到确切的规则。
这就是为什么我实现了一个基于paulkernfeld答案的函数。
def get_rules(tree, feature_names, class_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
paths = []
path = []
def recurse(node, path, paths):
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
p1, p2 = list(path), list(path)
p1 += [f"({name} <= {np.round(threshold, 3)})"]
recurse(tree_.children_left[node], p1, paths)
p2 += [f"({name} > {np.round(threshold, 3)})"]
recurse(tree_.children_right[node], p2, paths)
else:
path += [(tree_.value[node], tree_.n_node_samples[node])]
paths += [path]
recurse(0, path, paths)
# sort by samples count
samples_count = [p[-1][1] for p in paths]
ii = list(np.argsort(samples_count))
paths = [paths[i] for i in reversed(ii)]
rules = []
for path in paths:
rule = "if "
for p in path[:-1]:
if rule != "if ":
rule += " and "
rule += str(p)
rule += " then "
if class_names is None:
rule += "response: "+str(np.round(path[-1][0][0][0],3))
else:
classes = path[-1][0][0]
l = np.argmax(classes)
rule += f"class: {class_names[l]} (proba: {np.round(100.0*classes[l]/np.sum(classes),2)}%)"
rule += f" | based on {path[-1][1]:,} samples"
rules += [rule]
return rules
规则按照分配给每个规则的训练样本的数量进行排序。对于每条规则,都有关于预测的类名和分类任务预测概率的信息。对于回归任务,只打印关于预测值的信息。
例子
from sklearn import datasets
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
# Prepare the data data
boston = datasets.load_boston()
X = boston.data
y = boston.target
# Fit the regressor, set max_depth = 3
regr = DecisionTreeRegressor(max_depth=3, random_state=1234)
model = regr.fit(X, y)
# Print rules
rules = get_rules(regr, boston.feature_names, None)
for r in rules:
print(r)
印刷规则:
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS > 1.385) then response: 22.905 | based on 250 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM <= 6.992) then response: 17.138 | based on 101 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM > 6.992) then response: 11.978 | based on 74 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX <= 0.659) then response: 33.349 | based on 43 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO <= 19.65) then response: 45.897 | based on 29 samples
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS <= 1.385) then response: 45.58 | based on 5 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX > 0.659) then response: 14.4 | based on 3 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO > 19.65) then response: 21.9 | based on 1 samples
我在我的文章中总结了从决策树中提取规则的方法:用Scikit-Learn和Python以3种方式从决策树中提取规则。
这是基于@paulkernfeld的回答。如果你有一个包含特征的数据框架X和一个包含共振的目标数据框架y,你想知道哪个y值结束于哪个节点(并相应地绘制它),你可以做以下工作:
def tree_to_code(tree, feature_names):
from sklearn.tree import _tree
codelines = []
codelines.append('def get_cat(X_tmp):\n')
codelines.append(' catout = []\n')
codelines.append(' for codelines in range(0,X_tmp.shape[0]):\n')
codelines.append(' Xin = X_tmp.iloc[codelines]\n')
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
#print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
codelines.append ('{}if Xin["{}"] <= {}:\n'.format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
codelines.append( '{}else: # if Xin["{}"] > {}\n'.format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
codelines.append( '{}mycat = {}\n'.format(indent, node))
recurse(0, 1)
codelines.append(' catout.append(mycat)\n')
codelines.append(' return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
codelines.append('node_ids = get_cat(X)\n')
return codelines
mycode = tree_to_code(clf,X.columns.values)
# now execute the function and obtain the dataframe with all nodes
exec(''.join(mycode))
node_ids = [int(x[0]) for x in node_ids.values]
node_ids2 = pd.DataFrame(node_ids)
print('make plot')
import matplotlib.cm as cm
colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
#plt.figure(figsize=cm2inch(24, 21))
for i in list(set(node_ids)):
plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))
mytitle = ['y colored by node']
plt.title(mytitle ,fontsize=14)
plt.xlabel('my xlabel')
plt.ylabel(tagname)
plt.xticks(rotation=70)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
plt.tight_layout()
plt.show()
plt.close
不是最优雅的版本,但它做到了…
显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)
def export_dict(tree, feature_names=None, max_depth=None) :
"""Export a decision tree in dict format.
以下是他的全部承诺:
https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py
不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。
我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。
我创建了自己的函数,从sklearn创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6