我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
Thank for the wonderful solution of @paulkerfeld. On top of his solution, for all those who want to have a serialized version of trees, just use tree.threshold, tree.children_left, tree.children_right, tree.feature and tree.value. Since the leaves don't have splits and hence no feature names and children, their placeholder in tree.feature and tree.children_*** are _tree.TREE_UNDEFINED and _tree.TREE_LEAF. Every split is assigned a unique index by depth first search. Notice that the tree.value is of shape [n, 1, 1]
其他回答
Thank for the wonderful solution of @paulkerfeld. On top of his solution, for all those who want to have a serialized version of trees, just use tree.threshold, tree.children_left, tree.children_right, tree.feature and tree.value. Since the leaves don't have splits and hence no feature names and children, their placeholder in tree.feature and tree.children_*** are _tree.TREE_UNDEFINED and _tree.TREE_LEAF. Every split is assigned a unique index by depth first search. Notice that the tree.value is of shape [n, 1, 1]
我创建了自己的函数,从sklearn创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6
下面是我以一种可以直接在sql中使用的形式提取决策规则的方法,这样数据就可以按节点分组。(根据之前海报的做法)
结果将是后续的CASE子句,可以复制到sql语句,例如。
SELECT COALESCE(*CASE WHEN <conditions> THEN > <NodeA>*, >* CASE WHEN <条件> THEN <NodeB>*, > ....)* > FROM <表或视图>
import numpy as np
import pickle
feature_names=.............
features = [feature_names[i] for i in range(len(feature_names))]
clf= pickle.loads(trained_model)
impurity=clf.tree_.impurity
importances = clf.feature_importances_
SqlOut=""
#global Conts
global ContsNode
global Path
#Conts=[]#
ContsNode=[]
Path=[]
global Results
Results=[]
def print_decision_tree(tree, feature_names, offset_unit='' ''):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = [''f%d''%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0,ParentNode=0,IsElse=0):
global Conts
global ContsNode
global Path
global Results
global LeftParents
LeftParents=[]
global RightParents
RightParents=[]
for i in range(len(left)): # This is just to tell you how to create a list.
LeftParents.append(-1)
RightParents.append(-1)
ContsNode.append("")
Path.append("")
for i in range(len(left)): # i is node
if (left[i]==-1 and right[i]==-1):
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not " +ContsNode[RightParents[i]]
Results.append(" case when " +Path[i]+" then ''" +"{:4d}".format(i)+ " "+"{:2.2f}".format(impurity[i])+" "+Path[i][0:180]+"''")
else:
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not "+ContsNode[RightParents[i]]
if (left[i]!=-1):
LeftParents[left[i]]=i
if (right[i]!=-1):
RightParents[right[i]]=i
ContsNode[i]= "( "+ features[i] + " <= " + str(threshold[i]) + " ) "
recurse(left, right, threshold, features, 0,0,0,0)
print_decision_tree(clf,features)
SqlOut=""
for i in range(len(Results)):
SqlOut=SqlOut+Results[i]+ " end,"+chr(13)+chr(10)
下面是一种使用SKompiler库将整个树转换为单个(不一定太容易读懂)python表达式的方法:
from skompiler import skompile
skompile(dtree.predict).to('python/code')
下面是一个函数,在python3下打印scikit-learn决策树的规则,并对条件块进行偏移,使结构更具可读性:
def print_decision_tree(tree, feature_names=None, offset_unit=' '):
'''Plots textual representation of rules of a decision tree
tree: scikit-learn representation of tree
feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
offset_unit: a string of offset of the conditional block'''
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+"} else {")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"}")
else:
print(offset+"return " + str(value[node]))
recurse(left, right, threshold, features, 0,0)